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I present an approach and case studies for humanizing robots through acces-

sible design. Humanizing social robots is a central goal of human-robot interac-

tion research and often involves a combination of two objectives: humanizing

the mind through human-like intelligence, or humanizing the body through

lifelike humanoid features. However, these literal approaches to humanizing

pose technological and social challenges that have prevented adoption of robots

in everyday social contexts. Even if convincingly humanized robots could

be achieved, human-robot interaction may risk diminishing our capacity for

human-human interaction. I propose to avoid these pitfalls by humanizing the

robot as a medium for communication through accessibility. Accessibility can

humanize technologies by makings their inner workings visible and familiar

to human users, promoting understanding of the technological processes and

imperfections. Accessibility also enables broader demographics of lay users to

become involved with robotics, enabling communication through robots, from

development processes to applications. I use the open-source Blossom social

robot as an extended case study of this approach, and detail its technical im-

plementations and research deployments. The goal of this work is to present

accessibility as a way to humanize robots while enabling robot-mediated com-

munication for human-human interaction.
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Figure 1: My proposed approach for humanizing the robot, referencing Mori’s
bukimi no tani (aŸJ.⌅, “the valley of eerieness,” anglicized as “the uncanny
valley”) as a conceptual framework [1]. I equate “humanizing” with maximiz-
ing “human affinity” on the vertical axis of the graph (left green arrow), and
journey out of the valley by making accessible (gray arrow) three phases of robot
development: design, movement, and telepresence.

0.1 Humanizing the Robot

In this section, I explain my interpretation of how to humanize robots through

accessibility. I define the terms “robot,” specifically in the context of social

robotics, and “humanizing,” which draws upon Masahiro Mori’s concept of

“the uncanny valley.” I review current approaches and motivations for human-

izing robots, which typically involve literal humanization through humanoid

behaviors or appearances. I argue that, given the technological and social

challenges of this literal approach to humanizing, we can instead humanize
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robots through alternative designs, specifically zoomorphism and accessibility.

Zoomorphic designs have a humanizing effect by relaxing the expectations for

interaction. Making phases of robot development accessible further humanizes

by making the technology, including its processes and imperfections, familiar

to lay users.

“Robot” is defined as “a machine that resembles a living creature in being ca-

pable of moving independently and performing complex actions; a device that

automatically performs complicated, often repetitive tasks (as in an industrial

assembly line)” [5]. Though the term carries etymological connotations of slav-

ery and drudgery from its Czech roots [6], the field of “social robotics” orients

away from utilitarian machines towards robots that perform social roles. The

definition of “social robot” has been subject to several interpretations within

human-robot interaction (HRI) research. Cynthia Breazeal, one of the pioneers

of the field, defines a “sociable robot” as “socially intelligent in a human-like

way, and interacting with it is like interacting with another person” [7]. Brian

Duffy defines the social robot as “a physical entity embodied in a complex, dy-

namic, and social environment sufficiently empowered to behave in a manner

conducive to its own goals and those of its community” [8]. Kerstin Dautenhahn

and Aude Billard define “socially intelligent agents” as those which “show ele-

ments of human-style social interaction and behavior” [9]. Terrence Fong et al.

define “socially interactive robots” as “robots for which social interaction plays

a key role” [10], requiring that the robot exhibit “human social characteristics

such as the expression and perception of emotions, high-level communication

abilities, and a distinct personality that changes over time.” The prevailing no-

tion common to all of these definitions is that the interactive capabilities of social

robots should be humanized to some degree.
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“Humanize” is defined as “to represent as human; to attribute human qual-

ities to; to adapt to human nature or use” [11]. The term does not explicitly

apply to only humans; we often humanize animals and objects by attributing

human-like qualities to them. In the context of the prior definitions of “social

robot,” humanization most readily translates to imbuing robots with the human

qualities of humanoid appearances and human-like behavior. Jean-Christophe

Giger et al. discussed humanization of robots from a psychological perspective,

referring to “the effort to make robots that more closely mimic human appear-

ance and behavior, including the display of humanlike cognitive and emotional

states” [12]. Kate Keener Mays broadens the definition of “humanizing” to en-

compass sociological implications, such as the notion of robots’ social rights,

and what our use of robots as technology reveals about our own human tenden-

cies [13]. These definitions emphasize that humanizing is relative, dependent on

both the design of the robot and the user’s expectations and interpretations.

In establishing the definition of “humanizing” that I use throughout this the-

sis, I reference Masahiro Mori’s concept of bukimi no tani genshou (aŸJ.⌅

�`, “the phenomenon of the valley of eeriness,” often anglicized as “the un-

canny valley”) (Figure 1) [1, 14]. The graph’s horizontal and vertical axes, origi-

nally ruijido (C`$, “degree of similarity”) and shinwakan (ßÉç, “fellowship

feeling”), are often anglicized as “human likeness” and “affinity,” respectively.

“Affinity” itself is defined as “a liking for or an attraction to something; a qual-

ity that makes people or things suited to each other” [15]; this notion is similar

to familiarity2. I argue that a “human” before “affinity” was lost in transla-

tion; reintroducing it yields “human affinity,” which I equate to “humanizing.”
2The first character of shinwakan, ß, can be read as “familiarity.” Karl MacDorman inter-

preted shinwakan as “familiarity” in his initial 2005 translation [16], then as “affinity” in his
updated 2012 translation [17].
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Thus, to humanize is to increase the feeling of human affinity and familiarity. I

interpret humanizing as maximizing the vertical position on the uncanny valley

(Figure 1, green arrow). As with Giger et al.’s definition, approaches to human-

izing robots often comprise of two goals: humanizing the mind through familiar

human-like intelligence, or humanizing the body through familiar lifelike hu-

manoid appearance.

Figure 2: The first Google image results for “robot,” revealing a stark aesthetic
uniformity: rigid plastic or metal light-colored bodies with illuminated accents.

0.1.1 Humanizing the Mind

Given the contemporary novelty of actual physical robots, science fiction has in-

formed most public perceptions and expectations of robots [18]. A cursory web

image search shows that contemporary perceptions of robots conform to aes-

thetics inspired by fiction (e.g. HAL and the EVA pod from 2001 [19], EVE from

WALL-E [20]): rigid white bodies contrasted by black cutouts and illuminated
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Figure 3: “Robotic” (Cozmo, Jibo) (left), humanoid (Geminoid, Sophia) (mid-
dle), and zoomorphic (Keepon, Paro) (right) robots.

accents (Figures 2 and 3, left). Though some of these robots are slightly anthro-

pomorphized in their embodiments, they are largely humanized through their

human-like behaviors by speaking and emoting in ways that are familiar to hu-

mans. The fictional inspirations are present in several consumer robots, such

as Anki’s Cozmo and Vector [21], Jibo [22], and Kuri [23]. Though these robots

are technically sophisticated and well executed, the high expectations of their

intelligence imprinted by fiction are nigh impossible to meet, and they have yet

to live up to their promise as ubiquitous home companions [24, 25, 26].

0.1.2 Humanizing the Body

Inspired by other fictional works that critically question the boundary between

natural and artificial humans [6, 27, 28, 29], humanoid robots such as the Gemi-

noids [30] and Hanson Robotics’ Sophia [31] are exemplars of humanizing

robots through humanoid appearances (Figure 3, middle). Though technically

impressive and lifelike, the humanoid aesthetic raises expectations for human
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users and interactors [32]. This same sophistication lends them to be mostly

manually operated with few autonomous and actuation capabilities, limiting

their capacity as independent social agents [33]. Similarly, as theorized by Mori,

their imperfect approximation of human likeness in movement or appearance

may yield “eeriness” that lands them in the uncanny valley [1].

0.1.3 Alternative Approaches to Humanizing

Humanizing the robot can be formulated as two separate Gordian Knots3: hu-

manizing behavior tackles the knot of the artificial mind; humanizing appear-

ance tackles the knot of the artificial body. Disappointment can arise from the

gap between expectation and reality [34]; given that these approaches to hu-

manizing robots are both technologically and socially intractable, I propose to

instead cut both knots through zoomorphic robots (Figure 3, right). As an ex-

ample from fiction, in A.I.: Artifical Intelligence, the zoomorphic Teddy is ar-

guably the most human character in the film, serving as a loyal companion for

the more humanoid but less humanized robot child, David. Though it seems

counter-intuitive to humanize the robot through non-humanoid zoomorphism,

we often humanize animals and pets. Kate Darling likens human-robot interac-

tion to human-animal relationships with the potential for deep companionship

[35]. Paradoxically, reducing the human likeness relaxes the expectations for

interaction, potentially increasing the human affinity and familiarity (Figure 1,

“stuffed animal” region preceding the fall into the valley). I place “robotic”

robots on the initial gradual slope, zoomorphic robots on the local optima, and

humanoid robots in the nadir of the valley.
3An intractable problem of untangling a complexly tied knot; the trick solution is often to

just cut the knot.
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Returning to the prior definition of “humanizing” as the effort to increase

“human affinity or familiarity,” I argue that humanizing can be bolstered

through accessibility. I take “accessibility,” defined as “capable of being used or

seen; capable of being understood or appreciated” [36], to mean creating a robot

platform that is understandable and familiar to non-roboticists. Whereas literal

humanization (i.e. human-like behaviors and appearances) is closely aligned

with anthropomorphism and its psychological mechanisms [37], accessibility

humanizes by making technology familiar to lay users. This notion of human-

izing technology through accessibility is encapsulated in the aesthetic of post-

digital media. Music producer Kim Cascone coined the term “post-digital” in

response to musicians developing an “aesthetic of failure:” treating glitch and

imperfection from digital music production technologies as creative elements

rather than unwanted artifacts [38]. The artifacts can originate from either the

limits of the technology itself or from the technology’s accessibility to amateur

users. The imperfections reflect the imperfection of the technology’s human

creators and users. While the prefixing “post” connotes a return to “analog”

processes, Florian Cramer argues that post-digital media combines analog and

digital mediums to serve higher aesthetic goals while emphasizing processes

over products [39]. Mattia Thibault offers Nintendo’s Labo construction kits

as exemplars of post-digital aesthetics [40]: users construct do-it-yourself (DIY)

cardboard housings for the gaming console, combining analog craft materials

with digital electronic hardware to create physical interfaces, ranging from toy

pianos to robot exoskeletons. Vygandas Šimbelis presents several post-digital

works in his thesis titled Humanizing Technology Through Post-Digital Art [41].

Examples include Metaphone, a painting machine that uses biological sensors

as input devices, and STRATIC, an audiovisual experience that digitizes analog
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light displays and audio sources. By emphasizing human inputs and making

the system’s inner workings visible, Šimbelis humanizes his works by “making

digital technologies expose their imperfections and making them fathomable to

human beings.” The post-digital aesthetic provides a template for humanizing

robots by making their processes familiar and embracing imperfections – those

of the human creators and users and of the technology itself. The post-digital

emphasis on technological mediums invites an interpretation of robots as medi-

ums themselves.

0.2 Medium for Communication

In this section, I explain my interpretation of robots as mediums of communi-

cation. I first define the terms “medium” and “communication,” drawing from

media theory and the function of mediums in enabling communication. I then

relate these theories to robots as mediums themselves, and present other argu-

ments for their potential negative effects on communication. Finally, I reiter-

ate that a potential way to circumvent these negative effects is by humanizing

robots through accessibility.

“The medium is the message.”

Marshall McLuhan [42]

“Medium” is defined as “a means of effecting or conveying something; a

particular form or system of communication” [43]. Mediums can be any tech-

nology, artificial or natural, that enable communication, such as telephones

which enable synchronous remote auditory communication. This document is
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Figure 4: Shannon’s mathematical model of communication.

a medium for the written word, which itself is a medium through which the

authors communicate to readers, in a different space and at a different time.

“Communication” itself is defined as “a process by which information is ex-

changed between individuals through a common system of symbols, signs, or

behavior” [44]. I formalize “communication” through Claude Shannon’s math-

ematical model of communication, wherein a sender sends a message that is

encoded into a smaller embedded representation and decoded to the receiver

on the other end (Figure 4) [2]. The message is the information passing through

the medium, and the medium comprises of a compressed representation of the

message subject to an additional noise source 4. Marshall McLuhan, in claiming

that “the medium is the message,” argued that the medium is more important

than any message passing through it [42]. McLuhan offers the simple lightbulb

as an example: though potentially lacking any explicit message, it “creates an

environment by its mere presence.” The ability for the lightbulb to define the

environment and terms of communication, McLuhan argues, is much more im-

portant than any message that a light source may convey (e.g. neon signs, illu-

minated billboards). A robot is also a medium that explicitly communicates its

internal states through behaviors, while implicitly communicating its creators’

notions of “robot” through its design.
4Alternative models of communication maintain the medium-message distinction [45].
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Several scholars have written about robots as technological mediums. Dar-

ling, on the subject of zoomorphic robots used for healthcare, suggests that

robots can “serve as a mediator, a conduit, of human-human interaction” [35].

Julia Hildebrand argues that we must pay attention to the ecological influences

that robots have on ourselves and our way of being and communicating [46].

Sakari Taipale and Leopoldina Fortunati frame robots as a new class of informa-

tion and communication devices, similar to mobile phones, with the potential to

become the next “new media” [47]. Johan Hoorn has applied existing theories

of computer-mediated communication in the context of robots as two distinct

modes: robot-mediated communication (human users interact with other hu-

man users through the robot) and human-robot communication (human users

interact with the robot as an autonomous agent) [48]. In this work, I largely

focus on robot-mediated communication, partly due to the aforementioned dif-

ficulty in creating convincing human-like agents, but also due to the potential

of human-robot communication to negatively affect our capacity for human-

human communication.

“The nature of the medium...

the amputation and extension of [their]

own being in a new technical form.”

Marshall McLuhan [42]

McLuhan warns that though mediums can extend our communication abilities,

they may also amputate it. For examples, the lightbulb extends our night sight

but amputates our natural ability to see in the dark. In a modern setting, smart-

phones extend our ability to communicate across distances, but amputate our
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ability to converse face-to-face [49]. McLuhan warns that the benefits of exten-

sion through mediums “numbs” us, preventing us from noticing their capacity

for amputation.

“There is a danger that the robots,

if at all successful, will replace people.”

Sherry Turkle [50]

As with all mediums, robots pose risks for amputation. Sherry Turkle’s

ethnography of human-robot interaction illustrates the robot’s capacity for so-

cial amputation [50]. Turkle recounts users wanting to replace their partners

with sophisticated robots that always say “yes,” becoming dependent on robots

for matters as personal as health, or even creating robots as replacements for

deceased family and friends. Cherie Lacey and Catherine Caudwell warn that

robots, underneath their disarming and appealing aesthetics, may also conceal

insidious intentions such as data logging or behavior shaping [51]. Other schol-

ars have argued that offloading deeply human interactions to robots, such as

therapy and caretaking, may be dehumanizing and diminishing for our capac-

ity to interact face-to-face [52, 53, 54]. Robots as a medium may enable escapism

for users to run away from complex and mutually hurtful human relationships

towards the refuge of robots that neither tire nor disagree. HRI research, if suc-

cessful in its goal of humanizing robotic companions through human-like be-

haviors and appearances, may yield a new medium that amputates our social

capacity for human-human interaction.

I suggest that this amputation may be remedied by accessibility. Hildebrand

suggests that we can avoid the numbing amputation of technology by “making
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media workings visible to us,” echoing the post-digital notions of humanizing

technology through familiarity and accessibility. Making the workings of tech-

nology accessible invites a broader audience to participate in its development,

enabling communication between users through the technology as a medium.

In the context of robots, I propose to reframe phases of robot development as

forms of robot-mediated communication, including its physical construction,

behavior authoring, and use as an embodied communication device.

0.3 Humanizing the Robot as a Medium for Communication

I formulate this goal as the overarching research question of this work:

How do we create and humanize robots as

mediums to extend human communication?

I use the Blossom robot, an open-source social robot platform I developed

as a student, as an extended case study (Figure 5). I divide the approach to

humanizing Blossom into three phases of its development – design, movement,

and telepresence (Figure 5, left) – and detail the subsystems and interaction sce-

narios. Each phase emphasizes humanizing – “human affinity or familiarity” –

by focusing on familiarity through accessibility. Blossom’s design is accessible

hardware that is open-source and user-customizable, consisting of a tensile in-

terior actuation mechanism and soft exterior covers to achieve smooth, lifelike

movements. Blossom’s movement system is an accessible phone-based motion

authoring system with back end behavior generation algorithms that expand

upon the human-crafted behaviors. Blossom’s telepresence capability is an ac-
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Figure 5: Blossom’s journey out of the uncanny valley (left) and interpreting
each phase (design, movement, telepresence) as forms of robot-mediated com-
munication, as formalized through Shannon’s model of communication (right)
[2].

cessible front end motion-based teleoperation system that employs the remote

user’s proprioception. Involving users in each phase makes the inner workings

of the system visible and familiar to lay users, achieving humanizing through

accessibility.

Each phase further humanizes by framing the robot as a medium for com-

munication between human users (Figure 5). Accessibility enables lay users to

communicate through the robot in each phase. Blossom’s design communicates

user-defined perceptions of robot aesthetics, conveying diverse interpretations

of what the robot could look like. Blossom’s movement communicates user-

crafted behaviors, conveying how users interpret how the robot should show

affective responses. Blossom’s telepresence capability communicates between

users in remote locations, conveying human physicality at a distance. I apply

the communication model throughout to frame each phase as a form of robot-

mediated communication that extends human-human interaction.

14



The contributions of this work include:

• The design of Blossom, including physical artifacts and resources for re-

producing the platform.

• A method for robot movement authoring using a phone-based authoring

system and neural network-based behavior generation techniques.

• Descriptions of various deployments of Blossom, including case studies

and user evaluations.

The overarching contribution is the case study of Blossom’s development

phases interpreted as forms of robot-mediated communication. The following

sections of this thesis detail those three phases of Blossom’s development (de-

sign, movement, and telepresence).

0.4 Design

“The research through design artifact is

the medium of generalizable knowledge.”

Jeffrey Bardzell [55]

In this section, I provide an overview Blossom’s design5, including the aes-

thetic concepts that served as inspirations. I describe deployments of Blossom
5My contributions include: overseeing iteration through successive prototypes, from the ini-

tial 3D-printed prototype (designed by Greg Holman) to the laser-cut version (work carried out
by Harrison Chang, Miranda Jeffries, and Rebecca Cooper) and successive refining; designing
the electrical systems; creating the software library to control the robot (assisted by Michael Hu);
designing workshops and demonstrations; providing support for other Blossom users.
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Figure 6: Annotated portfolio [3] of Blossom juxtaposed against the aesthetic
concepts that inspired its design.

in research and outreach contexts. I then frame Blossom’s design as a form

of robot-mediated communication: the design idea is transmitted through the

medium of the physical artifact into a realization of the design.

0.4.1 Related

Research through design is a research paradigm that emphasizes the epistemo-

logical function of artifacts and focuses on “making the right things”: products

that transform the world into preferred states [56, 57]. Jeffrey Bardzell argues

that the research through design artifact is itself the medium of generalizable

knowledge [55]; knowledge is embodied in the artifact through its creation, and

extracted by users through its consumption. Knowledge passes through the ar-

tifact, similar to how a message passes through a medium in the model of com-
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munication. Blossom’s design as a physical artifact embodies several aesthetic

concepts, which I will review in this section.

Post-digital aesthetics and kintsugi

As explained in the preceding sections, post-digital aesthetics serves as a ref-

erence for humanizing by making technology familiar and exposing its imper-

fections [38, 58, 39]. Similar to post-digital, kintsugi (u¬�, “golden repair”)

is a Japanese aesthetic concept that embraces imperfection by emphasizing re-

pair and renewed strength [59]. These aesthetics encourage subjectively reinter-

preting perceived shortcomings as celebrations of the artifact’s history and rela-

tionships. Blossom’s design exhibits post-digital traits by blending digital (e.g.

motors, cables, software) and analog (e.g. wood, handcraft, strings) materials

in a DIY aesthetic and user-involved process to humanize its design. Within

social robotics, the OPSORO (OPen-SOurce RObot) social robot platform also

served as an inspiration [60]. OPSORO’s interior is comprised of reconfigurable

modules, which inspired the snap fits and minimal hardware of Blossom’s own

interior mechanisms. Like kintsugi, Blossom’s repairability lends the artifact a

history and promotes ethical consumption and reuse of technology.

Critical design

Anthony Dunne and Fiona Raby define critical design as “speculative design

proposals to challenge narrow assumptions, preconceptions and givens about

the role products play in everyday life” [61]. Blossom’s design is critical by

its uniquely “non-robotic” appearance, looking less like contemporary con-
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sumer and fictional robots and looking more like a stuffed animal brought to

life through a mix of traditional aesthetics and robotic technology. This uncon-

ventionality prompts users to critically question the stereotypical conformity of

robot designs (Figure 2).

Robotic aura, or A Tale of Two Walters

W. Grey Walter invented the first “modern” robots: tortoises that simply moved

towards or away from light sources [62]. Though simple, Walter remarked that

the tortoises’ behaviors were convincingly lifelike, and further anthropomor-

phized them with names: “Elmer” and “Elsie.” Like Walter’s tortoises, Blossom

is a simple assembly of motors and mechanisms, yet the result is more lifelike

than its individual components belie.

In Walter Benjamin’s seminal 1935 essay “The Work of Art in the Age of

Mechanical Reproduction,” he reflects on the then-burgeoning industrialization

and its devaluing effects on an object’s aura, “its presence in time and space, its

unique existence at the place where it happens to be” [63]. Benjamin’s aura is

reflected in mono no aware (ï.\L, “the pity of things”), another Japanese aes-

thetic trait that celebrates the ephemeral nature of existence. Like Benjamin’s

aura and mono no aware, though Blossom’s design is infinitely reproducible,

the marks of creation are present in the imperfections of its hardware and cus-

tomization of its aesthetics. Accessibility and aura are balanced by providing

the “template” for Blossom’s internal structure while keeping its exterior aes-

thetics open-ended.

We have deployed Blossom in workshops for middle schoolers to build and
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customize their own robots (Figure 6, bottom right, top row), and other research

groups have reproduced Blossoms for their own research goals (Figure 6, bot-

tom right, bottom row). Friedman et al. have used Blossom as a “canvas” to

explore clothing for robots [64]. Blossom addresses Sandoval et al.’s recommen-

dations for fiction-inspired robots by being expressive, low resource through

DIY, and by matching a user’s investment through the platform’s low cost [18].

Making Blossom accessible by involving users in its construction makes the

robot more familiar and human while empowering users to become involved

with robotics.

Generalizable outcomes and recommendations

• Making robots accessible through DIY and repairability familiarizes and

humanizes their design.

• Involving users in the robot’s construction empowers them to become in-

volved in robotics.

• Enabling modularity and customization frames the robot as a canvas for

users to critically reconsider what a robot could – rather than should – look

like.

• Open-source and extensible designs remove the onus for others to re-

design and reinvent existing platforms.

0.4.2 Design as Communication

Accessible robot design extends our capacity to communicate through the

medium of robots (Figure 7). The ideated design is encoded through creation
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Figure 7: The communication model applied to design. The ideated design is
encoded through creation into an artifact. The artifact is subject to noise in the
form of design limitations. The artifact is decoded through interaction into a
physical design.

into an artifact. The artifact is subject to noise in the form of design limita-

tions, imperfections, and its spatiotemporal uniqueness; the noise is the design’s

“aura.” The artifact is decoded through interaction into a physical design.

0.5 Movement

“Animation can explain whatever

the mind of man can conceive.”

Walt Disney [65]

In this section, I provide an overview of Blossom’s movement capabilities6. I

describe the movement authoring system that comprises of a smartphone-based

motion interface, which enabled crowdsourcing of emotive movement samples

from lay users. I then describe the approach for expanding Blossom’s behav-

ior library using the crowdsourced dataset and generative neural networks. I
6My contributions include: designing the movement authoring system (assisted by Michael

Hu); crowdsourcing the movements (assisted by Preston Rozwood); designing and implement-
ing the neural networks (advised by Mason Bretan); performing user evaluations.
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then detail two applications of this system – movement affective modification

and face→movement translation – and the user evaluations performed. I then

frame Blossom’s movement as a form of robot-mediated communication: the

human-crafted movement is transmitted through the medium of the movement

generation model into a model-generated movement.

0.5.1 Related

Minimally expressive robots with limited audiovisual affordances express

themselves through movement [66]. The existence of robots in physical real-

ity sets them apart from voice- and screen-based agents. Even simple embodi-

ments such as the Roomba [67] and an actuated stick [68] can convey emotions.

Roboticists take cues from Disney’s animation principles to create robots with

lifelike movement [65], such as the Tofu robot which features a foam core to

achieve squash-and-stretch [69]. These concepts are implemented in the pas-

sively smooth design of Blossom’s tensile mechanisms. The movement author-

ing system is also accessible to crowdsource movement samples from a diverse

range of users. These movement samples act as inputs to generative behavior

neural network models for expanding the robot’s behavior library.

0.5.2 Implementation

Movement authoring system

Robot movement authoring often requires specialized motion planning soft-

ware and knowledge of robotics. Even accessible methods (e.g. learning

21



Figure 8: The movement authoring system. Users move the phone (left), and
DeviceOrientation transmits the motion of the phone through ngrok and
socket.io to the robot. The robot’s back end inverse kinematics model calcu-
lates the motor positions required to match the phone’s pose. For the telepres-
ence application, WebRTC transmits a first-person video feed from a wide-angle
camera embedded inside the robot’s head to the phone interface.

from demonstration (LfD) [70]) require familiarity with a specific robot plat-

form. In the interest of accessibility, we built the movement authoring sys-

tem as a simple phone-based motion control interface (Figure 8, left). The

DeviceOrientation API records the phone’s motion, which passes through

an inverse kinematics model to calculate the motor positions required for the

robot’s head to match the phone’s pose. ngrok and socket.io handle com-

munications between the phone and robot’s control computer.

Data crowdsourcing and processing

We gathered movement samples from non-expert users. We first prompted

users with videos of cartoon characters (e.g. Homer Simpson, SpongeBob
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SquarePants, Pikachu) emoting either happiness, sadness, or anger, then in-

structed them to control Blossom as if it were conveying the same emotion.

We recorded the emotive movements and yielded a dataset of approximately

150 movements (50 per each of happiness, sadness, and anger). The movement

data stream is limited to 10 Hz and we chunked the samples into equal seg-

ments, between three to five seconds depending on the application.

Networks

Figure 9: The movement VAE. The encoder compresses the input movement xm

into the latent embedding zm (left). The decoder uncompresses the embedding
into a reconstruction of the input ym!m (right). The classifier separates the latent
space by emotion label lm (happy, sad, or angry) (top).

For our applications, we used a variational autoencoder (VAE) as the base

neural network model [71]. A normal autoencoder (AE) passes input data (e.g.

images, text) through an encoder into a compressed latent embedding space.

The latent embeddings then pass through a decoder to reconstruct the original

input data. The loss function to minimize (LAE) is the difference between the in-

put and its reconstruction, and passes through a differentiable scaling function

f (e.g. absolute error, square error, etc).

LAE = f (reconstruction � input) (1)
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A VAE extends the normal AE by adding the Kullback-Leibler (KL) divergence

as a loss function LKL. The KL divergence structures the latent space such that

the embeddings z are sampled from a normal distribution z ⇠ N(0, 1). Our move-

ment VAE takes as input movement samples xm and outputs reconstructions

ym!m (Figure 9). We added an additional emotion classifier that operates on the

movement emotion labels lm and separates the latent embedding space by emo-

tion classes (happy, sad, or angry). We can use the same dataset and underlying

network structure for different applications, such as emotion modification and

intermodal face→movement translation.

Emotion modification

Figure 10: The movement modification latent embedding space and interface.
After training the network and learning the latent space (left), we used linear
regression to map the embeddings to the circumplex model of emotions (right)
[4]. We can modify movements in the valence-arousal space by adding latent
vectors to the embeddings and decoding through the network.

Drawing inspiration from neural modification for faces [72] and music [73],

we sought to modify high-level movement features by modulating low-level
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parameters in the embedding space. After training the network and learning

the latent representations, we used linear regression to map the latent space to

the valence-arousal axes on the circumplex model of emotion (Figure 10) [4].

We can adjust the affective features by adding vectors in the latent space and

decoding through the network, e.g. modifying happy movements into sad by

decreasing both valence and arousal. We deployed a subjective user evaluation

and found that the network could generate convincing movements, though only

happy→sad and sad→angry sufficiently conveyed the correct target emotion.

Face→movement translation

Figure 11: The face→movement translation network. The movement VAE re-
mains intact (top left to right). An additional ResNet-based image encoder
(bottom left) compresses images of facial expressions x f into the shared latent
space {zm, z f }. Once the end-to-end network is trained, we can translate faces
into movements by passing images through the face encoder and movement
decoder (bottom left to right).

Drawing inspiration from works in neural machine translation and image

captioning [74, 75], we were interested in neural intermodal translation for

movement. We chose facial expression images x f from the Extended Cohn-
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Kanade dataset due to its accessibility and use of the same labels as the move-

ment data [76]. Because we lacked paired datasets, we used the supervised

emotion labels as the semantic link between the disparate data modalities. We

adjusted the base VAE network by appending an image encoder built on a pre-

trained ResNet-50 model (Figure 11, bottom left) [77]. We adopted a technique

from cross-modal manifold alignment [78] to align the movements embeddings

zm and face embeddings z f in the latent space. We used a triplet loss function

that attracts embeddings of the same emotion (e.g. happy movements attract

happy faces and other happy movements) while repelling other emotions (e.g.

happy movements repel sad and angry movements and faces). We deployed

a user survey and found that the network could convincingly translate happy

and sad movements (Figure 1, top right), but angry movements were not recog-

nized. We attribute the difficulty of creating angry movements as an inherent

limitation of the expressiveness of the limbless robot. We are experimenting

with additional appendages (e.g. arms, tails) to enhance Blossom’s expressive-

ness.

Generalizable outcomes and recommendations

• Making robot behavior authoring accessible (e.g. through familiar inter-

faces such as phones) enables crowdsourcing samples from non-expert

populations, but requires secondary quality assurance.

• Using automated generation methods expands a robot’s behavior library

by complementing, but not supplanting, the human-crafted behaviors.

• Head-only robots may need more appendages, degrees of freedom, or ex-

pertly crafted movements to broaden their expressive range.
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0.5.3 Movement as Communication

Figure 12: The communication model applied to movement. The movement is
encoded through the network into a latent embedding space. The embeddings
are subject to noise in the form of model limitations. The embeddings are de-
coded through the network into reconstructed or new movements.

Accessible robot movement authoring extends our capacity to communicate

through the medium of robots (Figure 12). The human-crafted movement trajec-

tory is encoded through the network into a latent embedding space. The latent

embeddings are subject to noise in the form of model limitations and subjectiv-

ity of the data labels; the noise is the network’s “aura.” The latent embeddings

are decoded through the network into reconstructed or newly generated move-

ments.
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0.6 Telepresence

“Virtual reality is simulacral, telerobotics is distal.”

Ken Goldberg [79]

In this section, I provide an overview of Blossom’s telepresence capabili-

ties7. I describe the new functionality, including remote teleoperation and video

monitoring for first- (looking through the robot) and third-person (looking at

the robot) perspectives. I then detail the remote user evaluation of this system.

I then frame Blossom’s telepresence capabilities as a form of robot-mediated

communication: the remote user’s physical movement is transmitted through

the medium of telecommunication into movement on the physical robot.

Figure 13: The first Google image results for ”telepresence robot,” revealing
another stark aesthetic uniformity: tall pole-mounted screens on roving bases.

0.6.1 Related

Though telepresence robots are available as research platforms and commercial

technologies (Figure 13), many are non-accessible due to cost or technological

limitations, and often shunt the user’s physical proprioception and embodiment

by relying on button-and-joystick interfaces. Whether in a virtually stitched
7My contributions include: designing and implementing the technical capabilities to enable

remote teleoperation; performing user evaluations.
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space [80] or through a physical screen-based telepresence robot [81, 82], grant-

ing users motion-based agency of their remote embodiment improves commu-

nication and the experiential senses of co-location and agency [83]. Sakashita et

al. used virtual reality systems to enable puppeteers to remotely control a robot

[84]. Mandlekar et al. used smartphones to remotely crowdsource LfD trajecto-

ries for robot arm grasping tasks [85]. We drew inspiration from these works to

create an accessible embodied robot motion control system.

0.6.2 Implementation

We extended the existing phone-based control system to enable teleoperation

from a remote access point (Figure 1, bottom left). We embedded a wide-

angle camera inside Blossom’s head, which transmits a first-person video feed

through WebRTC to the phone interface (Figure 8, left). An external webcam

directed at the robot transmits an external third-person view of the whole robot

to an optional desktop interface.

We have performed initial research evaluations of the telepresence system.

We continued remotely crowdsourcing movements for the generative models,

and also compared user preferences between the first- and third-person views.

We found strong overall preferences for the third-person view, which may be at-

tributed to Blossom’s aesthetic appeal and the external perspective being more

appropriate for the movement authoring task. Though some users noted diffi-

culty in conveying disparate emotions, most users quickly adapted to the phone

interface and expressed that the experience was “cool” and “(really) fun.”
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Generalizable outcomes and recommendations

• Motion-based telepresence robot control employs the user’s own kines-

thetic senses to heighten immersion in the remote environment.

• Screens as the principle design elements of telepresence robots should be

reconsidered, especially in the context of mirror anxiety [86] and screen

fatigue [87].

• Certain telepresence applications may benefit from a mix of first- and

third-person perspectives.

0.6.3 Telepresence as Communication

Figure 14: The communication model applied to telepresence. The remote
user’s physical movement is encoded through the phone interface into the kine-
matic definition of the motion. The kinematic definition is subject to noise in the
form of telecommunication limitations. The kinematics are decoded through the
mechanism into the robot’s movement.

Accessible robot telepresence extends our capacity to communicate through

the medium of robots (Figure 14). The remote user’s physical movement is en-

coded through the phone interface into the kinematic definition of the motion.

The kinematic definition is subject to noise in the form of telecommunication

limitations such as bandwidth, lag, and mismatch between the theoretical and
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actual kinematics of the phone and robot; the noise is the telerobot’s “aura” [88].

The kinematics are decoded through the mechanism into the robot’s movement.

0.7 Discussion

The prior sections provided overviews of three phases of Blossom’s develop-

ment, and an interpretation of each as a form of robot-mediated communication.

The following sections expand the phases and detail their constituent projects.

These sections are comprised of the representative journal and conference pub-

lications, modified for continuity.
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Part II

Design
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CHAPTER 1

BLOSSOM: A HANDCRAFTED OPEN-SOURCE ROBOT

1.1 Introduction

The design of social robots with expressive capabilities is an active area of re-

search in human-robot interaction (HRI). Dating back to MIT’s Kismet—a robot

specifically built to express internal states through facial movement and vo-

calizations [89, 7]—researchers in HRI have been developing methods for ex-

pressive capabilities of robots and collecting empirical evidence for the effects

of these behaviors. Some of these robots use facial expressions [90, 91, 92, 93]

while others express their internal states through bodily gestures [66, 94, 95, 96]

or other modalities [97, 98]. More recently, consumer electronics compa-

nies have also started to explore expressive social robots as commercial prod-

ucts [99, 100, 101].

Designing and building such a robot, however, requires extensive knowl-

edge and resources in mechanical and electrical engineering. Similarly, design-

ing and implementing the robot’s expressive gestures and behaviors requires

professional skills in computer science and 3D character animation. This makes

robot building and programming inaccessible to a large swath of users.

This lack of accessibility limits the use of social robots for both researchers

and end-users. For example, most researchers in HRI have a choice of one of a

handful of programmable social robots, such as the Softbank Robotics’s NAO

or Pepper robots, Philips’s iCat, Rethink Robotics’s Baxter, or the MyKeepon

platform. These robots are subsequently exceedingly prevalent in the HRI liter-
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Figure 1.1: Three variations of Blossom with different embodiments and ac-
cessories. The robot on the left is knitted, and the two robots on the right are
crocheted. The two robots on the left display swappable wooden ears and a
number of attachable facial features, while the robot on the right features soft
silicon arms as appendages.

ature, e.g. [102, 103, 104, 105, 106, 107, 108, 109]. Each of these robot has a single

outward appearance, which is overcome at times with adornments such as hats

or other accessories [110]. Still, it is difficult to adapt the robot’s appearance to

the task at hand, rendering them inflexible with respect to specific applications

and personalization.

The majority of social robots are also rigid in a more literal physical sense:

Their exteriors are made of hard plastic or metal shells manufactured using

additive and subtractive methods such as 3D printing, molding, and milling.

These exteriors are fixed to direct or geared drive mechanisms and rigid link-

ages with fasteners such as bolts and adhesives to form solid connections. This

mechanical rigidity restricts the robot’s expressiveness and interactive capa-

bilities. Rigid actuation mechanisms make it difficult to achieve smooth, or-

ganic movement without complicated software control or trajectory generation.

Stiff direct linkage mechanisms also discourage physical interaction due to their

hard tactile affordance and fear of damaging internal components.
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In this work we present Blossom, an open-source robotics platform for re-

searchers and hobbyists, with the goal of addressing the issues identified above.

Blossom is designed to allow researchers and end-users to imagine and build

their own robot, enabling more flexible design possibilities in the robot’s ap-

pearance, structure, and behaviors. This could increase adoption and help di-

versify HRI research. In addition, Blossom offers a novel mechanical design

with compliant, organic movement in mind, to support expressiveness and in-

teractivity.

Blossom thus attempts to achieve three design objectives: accessibility, flexi-

bility, and expressiveness, implemented through the following design choices:

• The robot can be easily put together by lay-users.

• It has modifiable degrees-of-freedom (DoFs), but is still predictably expres-

sive.

• It uses a tensile mechanical structure that affords smooth movements and

safe interaction.

• Its appearance can be handcrafted with traditional crafts.

• Both its mechanism and exterior can be made from readily available low-cost

materials.

• New behaviors can be defined without requiring programming or computer

animation skills.

• Behaviors are accessible through an open interface suitable for a broad range

of applications.

Notably, Blossom is not a robotics kit in the same vein as LEGO Mind-

storms™ or Meccano™, which differ in two important ways. First, these kits
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provide a widely open-ended design space which is not tailored to any specific

application. In particular, they are not designed with expressive behavior or so-

cial interaction in mind. Second, these kits cater mostly to technically-oriented

users and focus on the robot’s construction rather than its use. In contrast, Blos-

som is socially-oriented, while still being easily customized by non-technical

users, and focused on the end-user of the robot.

As a use case, we imagine a social science research group with limited tech-

nical expertise but interest in a research question related to HRI. Researchers in

this group should be able to quickly build, fashion, and use a Blossom robot

and define behaviors specific to their application. Another scenario could be

a lay-user who is uninterested in engineering and programming but wants to

build a social robot for their personal use with a particular appearance and set

of behaviors.

In this paper we present Blossom’s mechanical, electronics, and software

implementation and detail the customizable exterior and behavior of the robot.

To evaluate the design, we provide four case studies of field deployments where

users implemented or interacted with Blossom robots.

1.2 Related Work

Blossom relates to the existing literature in social robot design, gesture genera-

tion, and open-source robotics construction kits.

36



Figure 1.2: Jibo, Buddy, Pepper, and Cozmo (top) are examples of social robots
with similar design features related to consumer electronics devices. Keepon,
Paro, DragonBot, and Tofu (bottom) exhibit softer and more zoomorphic em-
bodiments.

1.2.1 Social Robot Design

Aesthetic designs for social robots range from product-like to organic. Jibo,

Buddy, Pepper, and Cozmo (Figure 1.2 top) are examples of robots with fea-

tures akin to those of consumer electronics devices, such as straight lines,

rounded edges, touch screens, and illuminated accents [22, 111, 112, 113]. On

the other side of the spectrum are creature-like robots such as Keepon, Paro,

DragonBot, and Tofu (Figure 1.2 bottom), evoking a more zoomorphic aes-

thetic [114, 115, 116, 69]. All these robots’ appearance and DoFs are fixed and

not customizable by their users.

The choice of materials also plays an important role in robot design.

Appliance-like robots are generally made from rigid materials such as plastics or

metals with smooth finishes. While the use of alternative and handcrafted ma-

terials has been emergent in other interactive technologies [117, 118], it has been

less explored in social robotics. OPSORO (Open Platform for SOcial RObots)

is an exception in that it uses fabrics in the design of its soft covers [119]. Ad-
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ditional examples exist in hobbyist circles, such as TJBot, a single-DoF desktop

robot, and Smartibot, a phone-controlled mobile robot, both constructed from

cardboard [120, 121].

For actuation, most robots use rigid mechanisms and direct-drive motors

to achieve movement. Smooth motions must thus be achieved through intri-

cate control software and trajectory generation tailored to the robot’s kinemat-

ics. Some have explored pneumatic actuators that can achieve smooth motion

through mechanical design [122], but the pumps and compressors required to

drive these systems are often noisy and cumbersome. Another approach is to

use tensile mechanisms to trade precise control for range and smoothness of

motion. One example is the prototype robot Tofu, which has a head attached

to a foam column with cables pulling on the head for actuation [69]. Another

example is Probo, a robot with a tensile trunk [123].

Compared to these social robots, Blossom’s design differs in that it is flexi-

ble, inside and out. Blossom features an open-ended exterior meant to be cus-

tomized by end-users through handcrafted materials, and its interior actuation

mechanism uses compliant tensile components. This actuation mechanism is

kinematically similar to Stewart platform mechanisms, which were used in the

DragonBot [116] and Peeqo [124] robots. However, in contrast to those mech-

anisms, Blossom uses compliant components to achieve smooth and lifelike

movement without requiring complicated software control. It also achieves a

larger range of motion than Stewart platforms with only half the number of

motors. Blossom’s mechanism bears similarity to that of the Tofu robot but has

a larger range of motion due to its free-floating platform; it is also simpler to

manufacture. In addition, Blossom’s exterior cover and internal mechanisms
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are not affixed to each other, allowing for more expressive movement through

slip and secondary action.

1.2.2 Robot Gesture Generation

Generating smooth and natural movements and gestures for social robots can

be a lengthy and complicated process. Traditional methods for gesture genera-

tion are generally programmatic, require knowledge of the robot’s kinematics,

and are not accessible to novice users. Allowing users to create their own ges-

tures affords a novel method of personalizing the robot and could help mitigate

the novelty effect stemming from robot movements being repetitive and pre-

dictable.

In efforts to make robot gesture generation more accessible and intuitive,

researchers have developed methods involving physical manipulation of the

robot. Mirror puppeteering involves placing markers on parts of the robot and

manipulating it in front of a camera to record movements [125]. Robots like

Topobo and ChainFORM implement “kinetic memory” which allows gestures

to be recorded by physically moving the robot’s appendages by using back-

drivable motors with position encoders [126, 127]. Learning from Demonstra-

tion supplements either approach by having the user provide corrective demon-

strations to iteratively teach the proper movements [70]. These approaches are

more intuitive than programmatic methods, but make it difficult to perform full

gesture generation in real-time, often requiring a layered approach in which

each DoF is actuated one at a time. In some cases, keyframes and interpolation

are used to complement the puppeteering activity. This approach makes it hard
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to achieve high-quality expressive movements.

In contrast, Blossom allows lay-users to create gestures using a smartphone

as a puppeteering interface. The robot’s actuation mechanism kinematically

resembles a free-floating platform and is controlled by mapping the orientation

of the phone to that of the robot’s head platform directly, enabling real-time

exploration and recording of gestures.

1.2.3 Open-Source Robots

There are a few existing open-source robotics projects that allow users to build

their own robot from openly accessible online data files. Robots like iCub,

Poppy, and InMoov are examples of open-source platforms that have humanoid

bodies and intricate mechanical and software designs [128, 129, 130]. Non-

anthropomorphic open-source robots such as Hexy and TurtleBot are compara-

tively simpler [131, 132], owing to their more abstract embodiments. While the

design of these robots are openly accessible, their appearances are largely fixed,

and the systems require a high degree of technical knowledge to build, pro-

gram, and use. Some of these robots can be programmed through visual block-

based languages such as Scratch or Blockly [133, 134], but this programmatic

approach does not support the authoring of new expressive gestures, making

them ill-adapted for social robotics applications.

Among open-source robot platforms, OPSORO is specifically socially-

oriented. It is comprised of modular components representing different facial

features and a customizable exterior cover that is made from soft materials [119].

This makes it more accessible and expressive than most other open-source so-
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cial robots. A semester-long deployment of the robot in a student design course

produced several unique embodiments ranging from animals to the likeness of

Albert Einstein. That said, OPSORO was largely designed for facial expressions,

and its behaviors must be defined programmatically.

1.3 Design Objectives

Figure 1.3: Design objectives of the Blossom platform and features that address
these objectives.

Blossom, in contrast, is designed to allow lay-users to create their own robot

end-to-end, from building its structure, through the design of its appearance, to

the authoring of new gestures and the combination of these gestures into behav-

iors. It address the gaps identified in existing social robot design by addressing

three design objectives (Figure 1.3):

Accessibility Lay-users without technical knowledge should be able to con-

tribute to all aspects of building and programming the robot.

Flexibility The robot’s design should allow end-users to alter aspects of its

appearance, mechanical structure, and interactive capabilities.
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Expressiveness Despite the accessibility and flexibility of the robot’s design,

it should maintain a high degree of expressiveness in its appearance and move-

ment. The movement should be smooth without relying on complicated control

software.

1.4 Implementation

This section describes the technical implementation of Blossom in pursuit of the

above objectives. It serves to enable the replication and extension of the tech-

nical aspects of the robot design. In overview, the robot’s mechanical structure

is made up of flat components which can be cut from sheets of wood or acrylic

and uses snap and press fits to reduce the need for fasteners. It is actuated by

a non-rigid tensile mechanism constructed from elastic components to achieve

compliant, organic movement. One of the DoFs is open-ended and can be used

to actuate custom appendages. The electrical design uses mostly snap connec-

tors that do not require soldering, and allows the robot to be either controlled

by an external computer via USB or run untethered using an on-board battery-

powered microcomputer. In both cases, an open Hypertext Transport Proto-

col (HTTP) application programming interface (API) allows remote control and

programming of the robot’s behaviors. The robot’s gestures are authored us-

ing a smartphone-based puppeteering application which can be recorded and

played back in real-time during operation, or saved on the robot to be triggered

by the remote HTTP API.
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Figure 1.4: The inner tensile actuation mechanism and exploded view. The main
expressive element is the head platform which is suspended from a tower by
rubber bands and actuated by cables driven by motors at the bottom of the
tower. The tower itself is rotated by the base motor. As an example of an ap-
pendage, the head platform features ear stands and a motor for actuating the
ears.

1.4.1 Mechanics

Blossom’s mechanical design is centered around a free-floating “head” plat-

form, which is actuated using a tensile mechanism for power transmission (Fig-

ure 1.4). The head is suspended from the top of the central tower structure with

rubber bands and is actuated by reeling in cables from the bottom of the tower.

The design is related to the Stewart platform mechanism which has been used

in other social robots [135, 124], but Blossom’s design is non-rigid and allows for

a larger range of motion than a Stewart platform, all while reducing the number

of motors from six to three. This is made possible through the variable lengths

of the tensile components, whereas a Stewart platform is limited by the fixed
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lengths of its rigid linkages.

This actuation mechanism also bears similarity to the one used in the pro-

totype Tofu robot [69]. While there is not much published information about

the robot, it is described as also using an elastic element (a cylindrical foam

core) to hold a head which is actuated by cables. However, unlike the foam core

used in Tofu to which the head and skin are rigidly attached, Blossom uses a

free-floating head with elastic bands (Figure 1.8 left), as well as a freely moving

exterior cover. This not only lowers the cost and difficulty of assembly, but also

allows for larger range of motion that is accentuated by secondary motions. Ad-

ditional movement is produced by a fourth motor in the base to rotate the tower

assembly and a fifth motor on the head platform that actuates customizable ap-

pendages.

Range of Motion

Figure 1.5 shows examples of the head platform’s range of motion. The ges-

tures of the inner mechanism can be classified as superpositions of several basic

motion primitives: moving all the tower motors synchronously causes verti-

cal translation, asynchronous motion results in pitching or rolling, and moving

the base motor produces yawing. These fundamental motions are combined in

timed sequences to create expressive gestures.

In addition to the increased range of motion, the tensile mechanism affords

gestures that are smooth and organic-looking to an extent that would be chal-

lenging to replicate through software alone. The physical elasticity specifically

supports several principles of animation [136, 137]. The cables and elastic bands
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(a) (b) (c) (d) (e) (f)

Figure 1.5: Examples of the mechanism’s range of motion. Vertical translation
(a!b) and rotations (c, d) are combined to create more complex gestures (e, f).

provide a springiness that enables ease-in and -out in smooth arcs. The variable

lengths of these components allow for greater exaggeration in motion. The mo-

mentum of the platform during quick movements elicits natural secondary mo-

tions such as overshoot and oscillation that would otherwise necessitate com-

plex trajectory generation in motion planning software.

1.5 Kinematics

The novel design of Blossom’s internal mechanism requires custom kinematics

for gesture generation and simulation.

1.5.1 Forward Kinematics

Figure 1.6 shows an approximation of the inner mechanism. For simplification,

the elastic bands are neglected and cables are assumed to be rigid links of vari-

able length capable of both pushing and pulling the platform. The attachment

points of the cables are denoted p1�3. As shown in Figure 1.6(a), the tower motor

wheels of radii rw rotate by ✓1�3 and the base motor rotation about the vertical

axis is denoted by ✓4.
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Figure 1.6: Kinematic diagrams of the robot’s inner mechanism. As shown in
(a), the inertial reference frame Ō =< ~iŌ, ~jŌ,~kŌ > is defined with the origin O at
the center of the platform when at rest. The lines from the base of the tower to
the attachment points p1�3 represent the cable. The tower motors that actuate
the platform are at the base of the tower and rotate the motor wheels of radius
rw by angle ✓1�3. The base motor located below the tower motors (not depicted)
rotates the tower about the vertical axis by ✓4. Top view diagrams in (b) show the
locations of the attachment points. The frames Ā1, Ā2, and Ā3 depicted in (c) are
aligned with the attachment points and rotate about the vertical ~kŌ axis shown
in (b). The side view (d) shows the actuation mechanics of a single attachment
point. The frame Ā0 is aligned with Ā as it rotates about the vertical ~kŌ axis, but
additionally rotates about the shared ~jĀ = ~jĀ0 axis out of the page. This results
in the rotation from Ā to Ā0 by the angle  i. The displacement is approximated
by �~hi with components �xi and �zi in the �~iĀ and �~kĀ axes, respectively. The
angle � is the angle between the vertical axis and the line formed by the cable
when the platform is at rest.

Top views in Figures 1.6(b) and (c) depict the locations of the attachment

points and define the intermediate frames (Ā1, Ā2, Ā3). These intermediate

frames are aligned with the attachment points p1�3 respectively and rotate about

the vertical inertial axis, with all ~k axes shared: ~kŌ = ~kĀ1 =
~kĀ2 =

~kĀ3 , and shown

as ~kŌ in Figure 1.6(b).

We are interested in the pose of the head platform given a set of motor angles

✓1�4. Consider the movement of one of the attachment points, pi as depicted in

Figure 1.6(d). The rotation of the motor wheel of radius rw by angle ✓i causes the

cable to be pulled in by length rw✓i. Denoting the angle between the vertical axis

and the cable as �, this shortening of the cable results in the displacement �~hi of
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point pi from its resting position to the actuated point p0i :

�~hi = ��xi~ı |̄ � �zi~k j̄ = �rw✓i sin �~i j̄ � rw✓i cos �~k j̄ (1.1)

A simplifying assumption is made that the attachment point moves along

this line and that � remains constant. The resulting actuated reference frame Āi
0

is a rotation of the original Ā1 about the shared ~|Ā1 = ~|Āi
0 axis out of the page. If

we denote the vectors from O to the resting position of the attachment point pi

as ~ri, we get ~ri = r~ıAi . After actuating motor i, we get the new vector from O to

pi, ~r0i :

~r0i = ~ri + �~hi = r~ıAi + �
~hi (1.2)

These vectors need to further be transformed to the inertial frame by the

planar rotation matrices of ✓4 for Ā1 and of ✓4 +
2⇡
3 and ✓4 +

4⇡
3 for Ā2 and Ā3,

respectively. The calculated positions of the attachment points can then be used

to determine the resulting orientation of the platform.

To do so, we define unit normal vectors for the idle and transformed orien-

tations as ~N and ~N0 respectively. We take ~N = ~kŌ to be simply pointing upwards

from O. The transformed vector ~kŌ can be calculated from a normalized cross

product of the transformed attachment point vectors in the plane of the actuated

platform.

~N0 =
(~r01 � ~r02) ⇥ (~r01 � ~r03)

|(~r01 � ~r02) ⇥ (~r01 � ~r03)|
(1.3)
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The normal vector to the rotation plane ~M can be calculated and used to

determine the quaternion rotation angle ↵ and frame defined in ~v.

~M =
~N + ~N0

|~N + ~N0|
(1.4)

↵ = ~M · ~N ~v = ~M ⇥ ~N (1.5)

~q =

2
6666666664
↵

~v

3
7777777775

(1.6)

This quaternion is then used to determine the change in orientation and the

downward displacement is approximated using Horn’s method. The resulting

changes in position and orientation are superimposed to determine the final

pose.

1.5.2 Inverse Kinematics

Given the above forward kinematics solution, we can compute the head plat-

form orientation given known motor positions. The same model can also be

used to derive the inverse kinematics to calculate the required motor positions

to achieve a desired final orientation of the platform. First, the Euler angles ( ,✓,

and � about the body~iB̄�, ~jB̄�, and ~kB̄�axes, respectively) of the desired orien-

tation are used to derive the rotation matrix ŌRB̄ from the B̄ frame in the final

orientation to the inertial frame ~O:
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ŌRB̄ =

2
6666666666666666664

c c✓ c s✓s� � c�s s s� + c c�s✓]

c✓s c c� + s s✓s� c�s s✓ � c s�

�s✓ c✓s� c✓c�

3
7777777777777777775

(1.7)

The rotation matrix is used to transform the representations of the positions

of the attachment points ~rp0i from the body frame ~B to the inertial frame ~O:

{~rp0i }Ō =
Ō RB̄{~rp0i }B̄ (1.8)

From the initial (~rpi) and transformed (~rp0i ) positions of the attachment points,

the displacements �~hi can be calculated by:

�~hi = ~rp0i � ~rpi (1.9)

Given the known size of the motor wheel rw we can then calculate the angu-

lar motor displacement ✓i:

|�~hi| = rw✓i ! ✓i =
|�~hi|
rw

(1.10)

Fabrication

Blossom’s fabrication process relies almost exclusively on laser cutting, which

has advantages over 3D printing for its reproducibility and speed, as well as for

the affordance of low-cost, recyclable, and readily available materials such as

wood and cardboard. The structure uses snap fits similar to OPSORO’s design
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Figure 1.7: Layout of the components used to assemble the mechanism.

Figure 1.8: Detail of the compliant components (elastic bands and strings) used
to suspend the head platform (left) and a snap-fit motor mount (right). Snap and
press fits are used throughout the structure for ease of assembly and to reduce
the amount of required hardware.

to reduce the amount of required hardware fasteners while being expandable

with different appendages and motor configurations. Figure 1.7 shows all of

components needed to build one Blossom robot with ears as appendages. Fig-

ure 1.8 (right) shows the motor mount as an example of a snap-fit component.
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1.5.3 Electronics

The electronics system also supports the design principle of accessibility by con-

sisting of commercially-available components that use simple mechanical con-

nectors, reducing the need for soldering.

Figure 1.9: Electrical component diagram. The robot can be used both in self-
contained mode through an internal system-on-board, or controlled by an ex-
ternal computer. The motors within the robot are daisy-chained and thus only
require one connection to the computer via the USB motor controller.

Figure 1.9 shows the components of the robot’s electronics system. The robot

consists of five daisy-chained servo motors and a Raspberry Pi (RPi) microcom-

puter running the Linux operating system. The motors are controlled by the

computer via a USB motor controller, which contains hardware to translate the

USB protocol to Transistor-Transistor Logic (TTL) signals, and manages the half-

duplex communication protocol of the servo motors.1

The robot can be used in one of two modes: self-contained or externally

controlled. In the self-contained mode, the motors are connected to the RPi

with the motor controller. Both the RPi and motors are powered by a 5-Volt (5V)

power source such as a portable battery pack, but separate power connectors are
1The motors are Dynamixel™XL-320 and the USB motor controller is either a Xeve-

labs™USB2AX USB-to-TTL interface or a Dynamixel™U2D2.
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used to prevent current overload on the logic components.

In the externally controlled mode, the RPi is unused and the motor controller

is plugged into an external UNIX-based computer. Because power cannot be

supplied through the motor controller and to prevent overcurrent on the com-

puter’s USB port, the motors must be powered from a separate 5V source such

as an additional USB port or an external power supply.

1.5.4 Software

The software system of Blossom supports the objectives of flexibility and ac-

cessibility. The same software runs whether the robot is run in self-contained

mode or externally controlled with a computer. The software uses the Open-

WoZ framework [138], allowing for flexibility in application by exposing each

of the robot’s behaviors to an HTTP Universal Resource Identifier (URI)-based

interface. This provides a flexible interface for creating behaviors, from high-

level control of the robot to programming it in code.
Accessibility 

Open-source design 
Easy to build and program

Flexibility 
Customizable exterior 

User-defined behaviors

Expressiveness 
Lively appearance 
Lifelike movement

Computer Robot Smartphone 
RPi 

HTTP Server

Motors
IMU

App.

Web App.

USB

Motor Ctrl. , Gesture Lib.

Figure 1.10: Combined hardware and software diagram. Solid lines denote
hardware, dashed lines and light gray shading denotes back-end software, and
dotted lines with dark gray shading denotes user interfaces. Physical connec-
tions are denoted by solid arrows and software communication is denoted by
dashed arrows.
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The robot’s software is made up of three main components (Figure 1.10):

a motor control module and gesture library to command the motors as well

as to store and play back authored movements (shaded light gray); an HTTP

server which listens to incoming requests and activates the appropriate gestures

(shaded light gray); and the various user interfaces (UIs) for commanding the

robot (shaded dark gray).

Motor Control Module and Gesture Library

The motor control is built on top of the PyPot motor control library [129], which

abstracts the low-level serial communication for the servo motors to higher-

level commands such as addressing motors and setting goal positions and

speeds.

In the motor control module, robots are defined by the motors used and

their respective ranges. The motors can be commanded directly, or controlled

by executing gestures from a library. Gestures are stored as timed sequences of

positions for each motor on the robot. The gestures can be played back with

modulations to the speed, range, or posture.

HTTP Server

The control computer includes an HTTP server that enables Representational

State Transfer (“RESTful”) communication with the robot, allowing for the robot

to be commanded from any device on the local network. This enables an open-

ended method for interfacing with the robot and makes it easy to build Wizard-

of-Oz (WoZ) interfaces, create custom applications that use sensor information,
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or communicate with existing web-based services or Internet-enabled devices.

The RESTful API receives the desired command or gesture and modulation

parameters. For example, to play back a gesture titled “nodding” at 0.8 times the

recorded speed and 1.4 times the amplitude of the original range of motion, the

REST command would be /s/nodding?speed=0.8&amp=1.4. Examples of

other functions include retrieving a list of available gestures and commanding

the robot to a given position. This implementation follows the modular com-

mand structure of OpenWoZ [138] and affords flexible communication between

the robot and clients built into user interfaces.

Additional behaviors can be added to the open-source HTTP server simply

by defining a function and linking it to a RESTful command. Parameters are

passed to the function as a URI string, and the custom behavior can parse the

parameters. This is, for example, how different “breathing” and other program-

matic idle behaviors are implemented.

User Interfaces

We demonstrate the flexibility afforded by the software architecture by present-

ing several methods we have developed to control the robot. In the simplest

case, users can use the command line interface (CLI) on the terminal that started

the robot HTTP server to trigger any command available to the RESTful API

by simply typing in the REST URI. Beyond the CLI, we developed web and

smartphone WoZ applications for high-level operation of the robot. A “sound-

board” design enables the creation of buttons for triggering gestures, or for ges-

ture/modulation combinations (Figure 1.12 (b)).
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Figure 1.11: The web application used to trigger gestures timed to a video. The
Blockly interface is used to denote when to trigger gestures and how to modify
playback speed, amplitude, posture, or looping. In this example, the robot resets
at the beginning of the video, plays the “happy” gesture at 5 seconds at 0.8
times the original amplitude (range of movement) and loops until 10 seconds,
at which it then plays the “sad” gesture sped up by a factor of 1.3.

An additional web application is embedded in a web page (Figure 1.11). It

allows Blossom to “react” to an online video as part of a research project in our

laboratory, in which Blossom acts as a video-watching companion. The web

page includes a video player and a Blockly interface for triggering gestures at

specified timestamps and modulating them, allowing users to easily choreo-

graph movement sequences to videos.

The mobile application (Figure 1.12) also supports triggering and modulat-

ing gestures but, more importantly, utilizes the phone as a puppeteering device

to control the robot’s expressive elements. Using smartphones as an input de-

vice supports the accessibility design objective by allowing lay-users to easily

create behaviors for the robot without having to manually program its move-

ments.

The puppeteering system leverages the smartphone’s built-in inertial mea-
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(a) (b) (c)

(d)

Figure 1.12: Screenshots of the phone app for controlling the robot (a) and play-
ing back gestures from within the app (b). The orientation of the phone is
mapped to the orientation of the robot’s head (c and d).

surement unit (IMU) to map the phone’s orientation to the orientation of the

platform. Phone data (kinematic orientation, slider positions) is sent from the

phone to the robot using the same RESTful API as previously mentioned. The

inverse kinematics of the robot as derived in Appendix 1.5 is used to deter-

mine the motor positions required to achieve a given orientation. Currently, the

IMU only controls the 3D orientation of the head, but not the vertical offset of

the platform’s height. This is because integrating the IMU’s raw accelerometer

measurements at the current data rate (approximately 10 Hz) would quickly re-

sult in sensor drift. To solve this, a slider adjusts the platform’s resting height.

Another slider controls the appendage motor. A mirror mode can be toggled

to reflect the motion horizontally to make it easier to control the robot while it

faces the user. Gestures can be recorded and played back within the application

and can also be looped indefinitely to make idling motions such as breathing or

looking around.
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1.6 Appearance

Figure 1.13: Concept sketches exploring different embodiments and move-
ments. The sketches show ideas for interchangeable exterior shapes, and ap-
pendages, meant to be hand-crafted by end-users.

The robot’s flexibility extends to its outer appearance design. Its exterior is

created from soft fabrics that are not rigidly attached to the interior skeleton, and

its appendages are interchangeable and in principle open to any tensile mech-

anism. Concept sketches from the ideation process of various exterior options

are shown in Figure 1.13, illustrating the flexibility in the robot’s appearance.

1.6.1 Soft Exterior

(a) (b)

Figure 1.14: Two examples of the swappable appendages: (a) two versions of
pluggable wooden ears and (b) flexible silicon arms. Both appendages are actu-
ated using the same tensile mechanism from the appendage motor mounted on
the main head platform.

The soft woven exterior of the robot supports expressiveness in two ways: by
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augmenting the compliance of the internal mechanism through its bending and

folding, and due to the fact that it flows freely over the structure. This helps

the robot to appear more lifelike by accentuating the organic movement and

providing mechanical flexibility to its exterior. Using traditional crafts rather

than CAD and rigid manufacturing techniques also supports the design goal

of accessibility by enabling a diverse user population to participate in robot-

building.

Three examples of crocheted covers are shown in Figure 1.1, one in the like-

ness of a blue bunny clown, one in the shape of a gray mouse or cat, and the

third modeled after a blue jellyfish. They are knit or crocheted out of wool. The

blue-and-white design is constructed as a single pull-over piece; the exterior for

the mouse design is also single piece but it is open at the top and closes with

a button in the back of the head; the jellyfish cover is made of two pieces (one

for the head and one for the lower body) that button together at the base of the

head. The covers are designed to be loose-fitting to support the organic move-

ment aesthetic and to not constrain the actuation mechanism.

1.6.2 Swappable Appendages

The robot’s flexibility is further emphasized by its swappable and open-ended

appendage mechanism. The head platform features an additional motor that

can interface with various accessories and appendages matched to different ex-

terior designs. Control of the appendages is also tensile, with the motor reeling

in a cable and either gravity or an elastic element restoring the DoF.

Figure 1.14(a) shows the mechanism for the ears. The ears attach to posts

58



on a rotating hinge adapter with two hooks, allowing them to be easily inter-

changed. The hinge adapter itself is tethered to the accessory motor. The jelly-

fish configuration features flexible arms as shown in Figure 1.14(b). The arms

are fabricated by first 3D printing a “skeleton” mold which is then filled with

silicone2. The rigid skeleton segments act as vertebrae with the silicone serving

as ligaments that connect all of the segments. In both cases, gravity restores the

DoF. We implemented two examples of swappable appendages, but in theory

any single tensile DoF could be added to the robot’s design. In the prototyping

phase of the robot’s design, we explored tails and spinal spikes as additional

DoFs.

1.7 Case Studies

To evaluate the extent to which Blossom achieves its design objectives, we have

deployed it in the field in four contexts. These deployments were useful in get-

ting feedback on the design and provided insight on how Blossom can interact

with a diverse range of users.

1.7.1 Providing the Design to External Research Groups

We provided Blossom prototypes to several external research groups. These col-

laborations have been useful in evaluating Blossom’s accessibility as a research

platform by testing the reproducibility of the design.

The first prototype was sent completely pre-built to a company-based re-
2The silicone used is Smooth-On EcoFlex™50.
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search team studying robot companions for children with autism. The research

team was able to set up the robot and control it from the RPi. They then used it

in technology demonstrations when meeting with therapists and user popula-

tions. A second prototype of the robot was given to a university-based research

team. We provided the basic components (as laid out in Figure 1.7) and a repos-

itory with the assembly instructions and software library [139]. The group was

able to successfully build the robot, install the software, and enlist the help of

volunteers to crochet new covers. The group has since implemented the robot in

their own field studies. A third prototype was assembled by another university

research group. Unlike the previous groups, we provided no components and

gave only a link to the repository containing the laser cutting design files, soft-

ware, and instructions [139]. Apart from troubleshooting some software-related

issues, the research team was able to independently build and control the robot.

The gradual open-sourcing of Blossom, from shipping a completely assem-

bled robot to only linking to a design repository, has supported the open-

sourcing of the robot and provided growing evidence for the accessibility of

the presented design and its potential to be used by a variety of users. The fact

that external research groups were able to build the robot with little assistance

and readily use it for their own research work has shown that the robot is eas-

ily reproducible and that an accessible open-source platform could be a useful

model for social robotics research.
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1.7.2 Public Exhibitions

Blossom has been exhibited at several public events, including two technology

fairs, an academic conference, and a collegiate project team showcase. These

events had diverse demographics of attendees, from lay-users to roboticists, and

were opportunities to present Blossom to a wider audience and receive feedback

on its design. During these events we showcased Blossom’s movement and

customizability and explained the motivation for the project. Participants re-

sponded positively to the robot’s design, and several indicated that they would

want to interact with it like a pet. At the project showcase, we showed differ-

ent configurations and allowed participants to control Blossom with the phone.

Though many found the controller to be somewhat difficult at the beginning,

they found the interaction to be entertaining and would use Blossom to gesture

to their friends, supporting to the robot’s expressive capabilities.

Along positive comments regarding the design, there were a few recurring

questions and suggestions. A common question was whether Blossom could

react to user input and whether it had sensors such as cameras or microphones.

Attendees familiar with fabric-making expressed interest in creating covers and

accessories and sharing the project with a broader craft-making community.

Others suggested interfacing Blossom with voice-based assistants to provide

them with a physical embodiment. Many also expressed interest in owning or

building a Blossom robot.

Showcasing Blossom at these events was useful in demonstrating its expres-

siveness and receiving feedback from a diverse population of users. The largely

positive comments regarding Blossom’s appearance are encouraging and affirm

that the design appeals to a wide audience. The difficulty that participants had
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with controlling the robot suggests that there is a learning curve to using the

phone as a controller. That said, the ability for untrained users to use a phone

to readily create gestures appeared to be more accessible than using traditional

programmatic methods.

1.7.3 Children’s Science Day

Figure 1.15: Children interacting with Blossom at the science day event (top)
and examples of accessories created by participants (bottom).

Blossom was exhibited at a children’s science day event where young chil-

dren, approximately 4-8 years of age, could visit stations with various activi-

ties (Figure 1.15). For our activity, we had craft materials available for children
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to create accessories for Blossom. Children would then affix the accessories

to Blossom and control the robot using a smartphone. Participants interacted

with Blossom in different ways, with some staying at the booth for a long time

crafting several accessories with others only interested in controlling the robot.

There were some children who came in groups and took turns between crafting

accessories and controlling; these groups sometimes collaborated by having the

crafter ask the controller to move the robot to make it easier to attach an acces-

sory. This might suggest that the Blossom platform can encourage collaborative

design and interaction of several users with a single robot.

Although we initially suggested creating ears, we were positively surprised

that children branched off to make a wide range of different accessories, from

appendages to facial features to jewelry. Most creations were simple single-layer

shapes, but some designs were more elaborate and featured multiple layers and

adornments. The diversity of accessories made emphasizes the flexible design

of the platform.

The ways that children controlled Blossom led to interesting observations

regarding the smartphone as a controller. Users would often move the phone in

exaggerated ways that Blossom would physically not be capable of achieving,

such as turning completely upside down or twisting around over 360°. The chil-

dren also had their own implicit feature requests, such as how to make Blossom

locomote and jump. These were emphasized by that fact that several children

chose to make appendages such as legs and wings.

Adults were also interested in Blossom, from the project’s application to its

technical implementation. Some parents participated by making their own ac-

cessories while others helped their children control the robot more effectively.
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They commented on the project as relating art and technology, fitting in with

Science, Technology, Engineering, Arts, and Math (STEAM) education, and also

noted Blossom’s unconventional appearance compared to traditional robot aes-

thetics.

The children’s science day was a valuable opportunity to demonstrate Blos-

som’s aesthetic flexibility and the accessibility of its customization and control

method, even to very young users. The positive responses to the activity from

children and adults alike show that they enjoyed the interaction and further

supports the platform’s expressiveness. We especially noted that the flexible

design of the robot supported users with diverging interests.

1.7.4 Build-a-Blossom Workshop

Figure 1.16: Examples of the embodiments created by the students in the build-
ing workshop.
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Lastly, Blossom was used in educational workshops for middle school stu-

dents to learn about the skills involved in robotics engineering. The students

had varying levels of technical experience, ranging from good familiarity with

technology to very little exposure to programming or mechanical construction.

The activity was to build and customize a Blossom robot, program its gestures,

and choreograph its movements to a video of the students’ choosing. There

were six workshop sessions; each was approximately 80 minutes long and had

16–20 students that were divided into four groups. The total was 107 students

in 24 groups. Lab members familiar with the construction and programming

processes were present to provide assistance, but intervention was kept to a

minimum and mainly involved guided troubleshooting.

Each group was provided a partially-disassembled robot and the assembly

instructions. The construction process included building the head platform and

attaching the ears, connecting the tower to the base assembly, connecting the

motors, and suspending the head by hanging it from the tower and attaching

the cables from the motors. A crocheted cover was included with each robot.

We observed that often some students were building the inner structure, while

other group members customized the cover with craft accessories. Figure 1.16

shows examples of some of the appearances created by workshop participants.

Once the robot was assembled, students connected it to a computer and pro-

grammed its movements using the smartphone application. Often groups des-

ignated one member with the mobile application to be the movement choreog-

rapher in charge of creating gestures. Students then imported the gestures into

the web application and timed each movement, some with modulation, to the

video chosen by the group. This resulted in a variety of choreographies with
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which the robot reacted to the student’s videos. The videos themselves ranged

from music videos to which the robot was made to dance, often “dressed up”

as the performing artist, to humorous videos with the robot reacting as an au-

dience. Other examples included viral videos (“memes”) where the robot was

fashioned like one of the characters in the video, imitating the action on screen.

All of the 24 groups were able to successfully build and control the robot

by the end of their session. The structures were mostly assembled correctly,

except for the ear assembly, which had sometimes to be bypassed due to its ca-

ble routing. The programming process was largely error-free and some groups

were able to make fairly complex choreographies. Similar to our observation

at the children’s science day event, many students tried to control the robot in

impossible manners.

The vast majority of students were actively engaged throughout the ses-

sions. We conducted brief informal question-and-answer sessions at the end

of each meeting, where students were asked to say what their favorite and least

favorite part of the workshop was. There was a wide variety of responses about

the favorite part, with some students enjoying the craft more, and others prefer-

ring the mechanical construction or the gesture generation. This suggests that

the Blossom platform allows students with different interest to be involved in

some capacity. Others expressed satisfaction at being able to build and control a

complete working robot in a short time. Several students who were admittedly

disinterested or intimidated by robotics at the beginning found themselves en-

joying it due to the engagement of the activity and the relation to personally

meaningful video content.

The workshop was an opportunity to thoroughly evaluate all of Blossom’s
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major design objectives. The fact that untrained middle-school students were

able to build and animate the robot within the duration of the sessions demon-

strated the accessibility of the platform’s assembly and gesture authoring work-

flow. The variety of embodiments and their relation to the personal content

choice of the students emphasized Blossom’s flexibility. The complexity of the

resulting choreographies indicates the robot’s expressiveness.

The difficulties in assembly highlighted weak points in the design that can

be rectified in future iterations, most notably the appendage module. The in-

terconnectivity between the robot’s control computer and the phone controller

can also be streamlined. Future evaluations on customizability should explore

alternative embodiments by providing different appendages.

1.8 Future Work

The field deployments of Blossom, together with our own experience in manu-

facturing and using Blossom, indicate several points in which the current design

can be improved upon.

Smartphone Control Mapping Many users who attempted to control the

robot tried to move it in ways that it was not capable of, such as turning all

the way around and flipping. This reveals a problematic mapping between the

unconstrained motion of the phone and the limited range of the robot. Possible

solutions include better instructions or training to control the robot properly,

a mechanical rig to place the phone into, enforcing the robot’s movement con-

straints, or methods for better mapping from the raw orientation detected by the
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smartphone’s IMU sensor to the robot’s pose. Relatedly, many users attempted

to control the height of the platform by raising and lowering the phone; while

it would be difficult to get accurate height control due to the sensor used, us-

able height control should be explored, possibly by using filtering or predictive

methods to alleviate drift.

Sensing Capabilities Users often commented that they wished Blossom had

sensing capabilities. Incorporating sensors for the robot to react to external in-

puts should thus be considered. Implementing sensors on the robot itself may

compromise its accessibility and handcrafted aesthetic, but simple sensors could

afford richer functionality without being obtrusive. Many have interacted with

Blossom by petting its head or calling to it, and components such as touch sen-

sors or microphones could be implemented to provide more functionality. An-

other approach is to leverage sensors built into smartphones [140], such as the

microphone or camera to avoid adding complexity directly to the design of the

robot itself.

Intermediate Programming Language The Blockly interface is currently only

used for triggering gestures to videos, but it could also be used as a mid-level

programming method that is more versatile than the existing Wizard-of-Oz in-

terfaces, while being still more accessible than a full programming language.

Features such as motor control and conditional statements responding to exter-

nal inputs could be useful to expand the current functionality.

Lower Cost On the mechanical side, while wood is relatively inexpensive and

is well-aligned with the handcrafted aesthetic of the robot, transitioning to an
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even cheaper material such as cardboard or paper could further improve its ac-

cessibility. The most expensive aspect of the current design are the high-end

servo motors. They provide many advantages over standard servo motors, pri-

marily velocity and acceleration control and daisy-chaining, but are relatively

expensive. Transitioning to standard hobby servos would significantly reduce

the overall cost of the platform at the potential cost of ease-of-control and move-

ment quality.

Diverse Appendages Finally, we would like to explore more kinds of ap-

pendages to illustrate the platform’s customizability. Flexible arms and

dinosaur-like spikes were briefly explored, but the ear design has proven to

be the most easy-to-use and expressive. Given the inclusion of limbs and wings

among the accessories created at the children’s science event, such alternative

configurations should be explored in the future. Different appendages may also

affect the robot’s expressiveness by altering its DoFs and therefore its gesture

capabilities.
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Part III

Movement
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CHAPTER 2

MOVEAE: MODIFYING AFFECTIVE ROBOT MOVEMENTS USING

CLASSIFYING VARIATIONAL AUTOENCODERS

2.1 Introduction

In this work, we demonstrate the use of neural networks to modify the affective

qualities of movements for an expressive robot. Current robot movement gen-

eration methods demand a deep understanding of the domain and its feature

space, rendering these processes costly and hard to implement. Conversely,

neural networks used in deep learning are able to learn the feature space on

their own, reducing the dependency on domain knowledge. Neural networks

may thus be applicable to the creation of expressive robot movements.

Robots designed for social interaction are becoming more common in spaces

such as homes and storefronts. Movements and gestures are important modes

of nonverbal communication that are unique to robots compared to other agents

without physical bodies [66, 141]. There are various methods for creating ex-

pressive movements, from manual trajectory editing interfaces to learning from

demonstration (LfD) [70]. However, these methods can be slow and often re-

quire prior knowledge of a specific robot platform. These techniques are thus

difficult to implement and lacking in generalizability. To more quickly create

new behaviors, roboticists sometimes turn to adjusting affective qualities of ex-

isting robot movements [142, 143, 144, 145]. Adjustment is easier than author-

ing new movements, but still requires technical knowledge of kinematics and

movement theory. These pitfalls lead to robot behaviors usually being prepro-

grammed, creating a novelty effect that stunts long-term interaction and con-
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veys a lack of intelligence [146, 147].

At the same time, advancements in deep learning have enabled the creation

of data-driven neural network models that can learn complex features given

sufficient data. These have enabled various applications ranging from tem-

poral forecasting to image generation [148]. While these methods have seen

success in tasks such as audiovisual perception and generation, they have re-

mained largely unadopted for generating robot behaviors, where most algo-

rithms are based on traditional machine learning methods or rely on problem-

specific heuristics [94]. Neural networks can reduce the dependency on domain

knowledge and heuristics by learning the features directly from the input data.

Recently, neural networks have been developed for modifying high-level fea-

tures in domains such as images [72] and audio [73] by editing low-level pa-

rameters in a learned ”latent” embedding space. These works used the same

approach for both images and audio, showing that neural networks can be more

domain-agnostic and generalizable than heuristic methods.

To address the problem of repetitive movements in interactive robots, we

propose to use deep learning techniques, particularly variational autoencoders

(VAEs), classification networks, and latent space editing methods, to modify af-

fective movement features for a low-degree-of-freedom (DoF) robot. We first

learn low-dimension latent representations of the robot’s affective movements.

These latent representations can be used to both reconstruct the original move-

ment and classify the movements by the intended emotion (happy, sad, angry).

We then modify the valence and arousal features of the movements by using

simple arithmetic operations in the latent embedding space. Our contributions

are:
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• A classifying variational autoencoder neural network architecture that

compresses expressive robot movements into a lower-dimension latent

space. The lower-dimension latent representations can reconstruct the

original movements and are separated by emotion class.

• A method using linear regression to map the latent space representations

into the circumplex emotion model dimensions of valence and arousal.

• An algorithm and interface for modifying the valence and arousal of the

movements.

• Objective and subjective evaluations to assess the validity of this ap-

proach, in the form of neural network performance metrics and an online

survey.

2.2 Related Work

We review works in affective robot movements and neural network applications

for affective robotics and latent feature modification.

2.2.1 Affective Robot Movements

Many prior works in human-robot interaction (HRI) categorize robot emotions

into discrete classes according to Ekman’s six categories: happiness, sadness,

anger, surprise, fear, disgust [149]. In contrast, the circumplex model places

emotion classes on the continuous dimensions of valence and arousal [150], with

valence corresponding to positivity and negativity and arousal corresponding
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to high and low energy. The circumplex model illustrates the qualitative rela-

tionships between the emotions and its continuous dimensions are conducive

for quantitative operations, making it suitable for adoption in numerical mod-

els.

2.2.2 Robot Movement Generation / Modification

Movements and gestures are primary ways for robots to express their internal

emotive states, and methods for designing affective robot movements have been

extensively studied [94].

Generation

There are many approaches for generating robot movements, from low-level

manual trajectory editing to high-level demonstrative techniques such as LfD

[70]. These methods, however, have several drawbacks. Editing trajectories

is time-consuming and unintuitive for non-roboticists, while directly manip-

ulating a robot for LfD may be difficult to perform in real-time. LfD can be

performed indirectly by attaching sensors to a human demonstrator, but this in-

troduces the correspondence problem of mapping a human movement to a non-

human embodiment. This has been addressed in many works within the graph-

ics community, often using heuristic mappings from human poses to animate

animals or other creatures [151, 152, 153]. Alissandrakis et al. explored heuristic

methods to address this correspondence problem for robots [154], though their

approach required extensive knowledge of the embodiment’s kinematics. These

difficulties lead robot movements to be largely preprogrammed and repetitive.
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Modification

Modifying existing movements can be used to quickly expand a robot’s library

of movements, but still demands a high level of technical knowledge. As dis-

cussed by Karg et al. [94], most techniques used to modify affective robot move-

ments rely on prior heuristic knowledge of robotics and the kinematics of a spe-

cific platform. These approaches typically adjust movement features that have

been empirically found to be important for conveying affect, such as gaze direc-

tion [142, 143] or speed [144]. Desai et al. used a simulation of a quadrupedal

robot with editable movement parameters such as walking pattern, speed, and

body angle to adjust the affective quality of its gait [145]. The interface and

method used was accessible compared to manual trajectory editing techniques,

but still required a high level of domain knowledge.

2.2.3 Neural Network Applications for Affective Robotics and

Latent Feature Modification

The strength of neural networks compared to heuristic methods is their ability

to learn complex and intractable data features with less dependence on domain

knowledge and manual feature engineering. Neural networks have found suc-

cess in complex applications for affective computing, primarily in perceptual

tasks such as emotion recognition [155, 156], though some works have explored

using neural networks for affective speech and expression generation [157, 158].
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Affective robotics

Apart from emotion recognition, there have been few applications of neural

networks for affective robotics. With regards to movement generation, Ro-

driguez et al. used a generative adversarial network (GAN) to generate talk-

ing gestures for a Pepper robot [159], but mostly generated random movements

that did not consider affect. In more affect-oriented work, Zhou et al. com-

pared hand-designed and network-learned feature costs for editing affective

handovers [160]. The results showed that the hand-designed features were more

suitable for expressing simple styles such as happy and sad, but the network

could be preferable for complicated styles such as hesitant. This suggests that

neural networks may be a better option for more complex affect expression.

Latent feature modification

Autoencoders are neural networks that learn a latent space to compress high-

dimensional data into low-dimensional representations. The learned latent

space can also be used to modify high-level features by editing the low-level

parameters. Larsen et al. used this approach to modify discrete features of face

images, such as gender and facial hair [72]. Roberts et al. extended this tech-

nique to modify continuous features of music, such as note density and pitch

[73]. These works used the same general techniques for two very different do-

mains, demonstrating the potential to use neural networks for modifying data

features with less domain knowledge compared to heuristic methods.

The capabilities of neural networks for feature modification can be applied

to affective robot movements. This intersection of HRI and deep learning can
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mitigate the novelty effect by continuously updating a robot’s behavior library.

An ever-growing repertoire of behaviors would help imbue robots with a sense

of affective autonomy and may promote prolonged human-robot interactions.

2.3 Neural Network Background

Neural networks are the foundational models used in deep learning, approx-

imating a transfer function from input data to output predictions. Compared

to simple linear perceptrons [161], modern neural networks use varied activa-

tion functions, convolutions, and recurrence in their layers to create a non-linear

model between the input and output. These layers can be arranged into various

network components such as encoders, decoders, or classifiers. Network com-

ponents can then be combined into larger architectures such as image classifiers

[162], recurrent networks [163], and autoencoders for dimensionality reduction

[164]. Neural networks are trained by defining loss functions for the desired

objectives, such as categorical cross-entropy for classification or mean error for

reconstruction. Before training, the input data is split into training and testing

sets. The training set is repeatedly passed through the network to optimize the

layer parameters to minimize the loss functions and achieve the objectives. The

test set is held out and does not update the network parameters, but is instead

used to validate the model’s performance on unseen data.
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2.3.1 Variational Autoencoders (VAE)

The primary network architecture used for this work is a variational autoen-

coder (VAE), which compresses input data into a latent embedding space while

also giving this space a known structure.

Autoencoders are comprised of two components: encoders to compress the

input data into a latent space, and decoders to decompress the latent space into

reconstructions of the original inputs. Traditional autoencoders seek to mini-

mize the reconstruction loss, which is defined as the difference between the in-

put data and output reconstruction. VAEs additionally implement a Kullback-

Leibler (KL) divergence objective, which structures the latent space into a Gaus-

sian distribution. �-VAE is a further modification that implements weighing

between the reconstruction and KL loss, allowing for the relative importance of

the objectives to be tuned [165].

The combination of the reconstruction loss and KL divergence ensures that

decoding from a random sample in the known latent distribution results in a

valid realistic data sample. In lieu of random sampling, the original data can

also be edited in the latent space to modify high-level features. This has enabled

the use of VAEs in various applications such as image modification [72] and

musical style transfer [73]. GANs were also considered and can extend VAEs to

achieve better results [72], but their notorious training difficulty makes simple

VAEs a better choice for our purpose.
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2.3.2 Latent Space Editing to Modify Features

Latent space modification in the aforementioned prior works [72, 73] was

achieved by calculating “attribute vectors” ~af in the latent space for modify-

ing high-level features f (e.g., hair color, musical pitch). The vector ~af can be

seen as a latent-space translation in the direction of data points that contain the

feature of interest.

Given a latent-space representation of a data sample ~x0, the high-level fea-

tures are modified by adding these attribute vectors. The degree of modification

for a given feature is controlled with a weight parameter c f .

~x = ~x0 +
X

f

c f~af

The modified latent representation ~x is then passed through the decoder of

the VAE to generate the new modified data sample.

In the face image modification work mentioned above [72], the features were

binary (e.g. mustache or no mustache, blonde or not blonde). The attribute

vectors were calculated as the difference between the mean latent vectors ~µ f of

the “yes” and “no” groups.

~af = ~µ f ,yes � ~µ f ,no

For music modification [73], features were continuous (e.g. note density,

pitch, average interval). The attribute vectors were calculated by first ranking

the samples in terms of intensity (e.g. high vs low note density) and taking the
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difference between the mean latent vectors of the highest and lowest quartiles.

~af = ~µ f ,Qhigh � ~µ f ,Qlow

2.4 Implementation

To illustrate our approach, we implemented a system to generate gestures ex-

pressing three emotions on a small desktop robot.

2.4.1 Robot Platform

We used the Blossom robot, an open-source social robot (Figure 2.1) [166]. Blos-

som’s internal mechanisms consist of a head platform suspended from a tower

structure that rotates about its base platform. Blossom features four degrees of

freedom (DoFs): roll, pitch, yaw, and vertical translation, though we disable ver-

tical translation to simplify the control interface. The robot achieves motion with

four actuators: tower motors 1, 2, and 3 control the front, left, and right sides of

the head, respectively, and a motor in the base rotates the tower left and right.

The robot’s head can pitch up and down and roll left and right ±45°and yaw

left and right ±150°about its base. Although the robot’s DoFs are limited com-

pared to more complex embodiments, it features a large range of motion and

head movements alone can convey complex affective information [167]. Users

can control the robot with a mobile application that maps the orientation of the

phone into motion for the robot’s body.
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Figure 2.1: The Blossom robot. The exterior (left) is made of soft materials while
the interior mechanism (right) consists of a central tower structure from which
the head platform is suspended by elastic bands. The head platform has four
degrees of freedom: roll, pitch, yaw, and vertical translation.

We collected a dataset of emotive Blossom movements by asking volunteers

to puppeteer the robot to display three main emotions: happy, sad, and angry.

Movements are created with a phone application that translates the movement

of the phone directly into the movement of Blossom’s head. The dataset con-

sists of approximately 25 movements per emotion class, each recorded at 10

Hz. Because neural networks require the input data to be consistently-sized,

the movements are cut down by chunking them into sliding three-second win-

dows every 1.5 seconds (Figure 2.2). The resulting dataset thus contains over
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5,000 120D samples 1.

Figure 2.2: Illustration of how the movement data is ”chunked” into three-
second windows with 1.5-second overlaps to be used by the network. In this
example, this six-second movement will yield three samples.

2.4.2 Neural Network

Figure 2.3: The network architecture consists of a variational autoencoder (left)
with an emotion classifier (center). Once the network is sufficiently trained to
reconstruct the movements and classify the latent representations by emotion
class, linear regression is used to map the nD latent space into the 2D circumplex
model (right) with the valence and arousal dimensions.

We constructed the neural network with Keras and TensorFlow [168].
130 (3 seconds, 10 Hz) points ⇥ 4 DoF = 120D.
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Classifying VAE Architecture

Figure 2.3 shows the network architecture which consists of a VAE with an addi-

tional emotion classifier. The role of the VAE is to compress the 120-dimensional

input movement data into a lower-dimension latent space. The classifier en-

sures that this latent space is separable by the emotion classes (happy, sad, an-

gry). The network is based on convolutional layers and the parameters are de-

tailed in Table 2.1. We chose convolutions over recurrence due to easier training

and adjustable temporal reception [169]. The number of filters corresponds to

the number of kinematic features to detect. Kernel size controls the receptive

field, with a larger size denoting increased temporal correspondence between

timesteps. Dropout was used to reduce overfitting given the small data size.

The training objectives are:

• Reconstruction loss to ensure that the output reconstructions are identical

to the input data.

• KL divergence to give the latent space a Gaussian structure.

• Classification loss to separate the learned latent space by emotion class.

Latent Space! Circumplex Model

The dimensions in the learned latent space do not meaningfully represent

human-readable affect. In order to both visualize the gestures and allow users

to modify them, we use linear regression to map the latent space onto the cir-

cumplex model’s valence and arousal dimensions. First, we calculate the cen-

troids of each emotion class in the nD latent space. Each centroid is then recal-

culated by weighing each sample by the inverse of its distance to the original
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Table 2.1: Network Layers and Parameters
Layer Parameters

Encoder

Input Movement (30x4)
Dropout 10%

Conv1D+BN 7 filters, kernel size 5
Leaky ReLU ↵ = 0.01

Dropout 5%
Conv1D+BN 4 filters, kernel size 3
Leaky ReLU ↵ = 0.01

Flatten –
Dropout 5%

KL Resample –

Decoder

Dense 60
Upsample1D 2
BatchNorm –
Leaky ReLU ↵ = 0.01
Conv1D+BN 4 filters, kernel size 3
Leaky ReLU ↵ = 0.01
Conv1D+BN 6 filters, kernel size 5
Leaky ReLU ↵ = 0.01
Conv1D+BN 6 filters, kernel size 5
Leaky ReLU ↵ = 0.01

Dense 30
Output Movement (30x4)

Classifier

Dropout 5%
Dense 13

Leaky ReLU+BN ↵ = 0.01
Dropout 5%

Dense 3
SoftMax –
Output Emotion

unweighted centroid. We use these weighted centroids to diminish the impor-

tance of movement samples that may be confused with another emotion class.

An ordinary least squares linear regression model fits the nD centroids of each

emotion to their locations on the 2D circumplex model. The circumplex model

does not numerically define the emotion locations, so they were arbitrarily cho-

sen as:
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• Happy: valence = 1, arousal = 1

• Sad: valence = -1, arousal = -1

• Angry: valence = -1, arousal = 1

After fitting the centroids to their locations, the linear regression model is used

to transform all movements into the circumplex space.

Latent Feature Modification

We use a similar approach to feature modification as prior works (see: Sec-

tion 2.3.2). First, the circumplex representations of the data samples are ranked

from high to low intensity for both valence and arousal features. For each fea-

ture f , the latent space means for the higher and lower halves are calculated as

~µ f ,high and ~µ f ,low Compared to the quartiles used in prior work [73], splitting into

halves was empirically found to yield better performance. A feature’s attribute

vector ~af is calculated as the difference between its high and low mean vectors.

~af = ~µ f ,high � ~µ f ,low

To modify the valence and arousal of a movement, its original latent repre-

sentation ~m0 is summed with a linear combination of the attribute vectors and

the feature weights c f .

~m = ~m0 +
X

f={V,A}
c f~af
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Modification Interface

Figure 2.4: Movement modification interface. The emotions are separated by
color and their centroids are marked: (h)appy is green, (s)ad is blue, and (a)ngry
is red. The selected movement ~m0 is modified by either adjusting the (V)alence
and (A)rousal sliders or by selecting an emotion from the (d)ropdown menu,
and ~m denotes the location of the modified movement. In this case, the drop-
down menu was used to modify a sad movement to be happy, and the sliders
updated accordingly. The (p)lay button plays ~m on Blossom, the (r)eset button
resets the sliders, and the (B)lossom button saves ~m to a file for later use.

We created an interface for visualizing the circumplex model and modifying

the movements (Figure 2.4). Each point on the scatter plot represents a three-

second movement sample projected from the latent space into the circumplex
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model using the regression parameters described in Section 2.4.2. The emotion

classes are color-coded and the projected centroids are marked. In the graph,

green is happy (h), blue is sad (s), and red is angry (a). The user selects a move-

ment ~m0 and adjusts the attribute vector weights c f using the valence (V) and

arousal (A) sliders. The projected modified movement ~m, denoted by the large

X marker, updates in real time. In addition to directly adjusting the feature

weight sliders, users can also use a dropdown emotion selector (d) to update

the attribute vector weights based on the emotion centroids. The dropdown se-

lector uses the valence-arousal distance between the target emotion’s centroid

and the original movement ~m0 to indirectly update the sliders and c f . In Figure

2.4, a sad movement at [0.4,-1.6] was modified to be happy, whose centroid lies

at [1,1]. Selecting ”happy” from the dropdown thus sets the valence and arousal

sliders to 0.6 and 2.6, respectively, and updates the movement ~m close to the tar-

get centroid. Once modified, the VAE decoder generates a three-second gesture

in the form of motor trajectories. The interface also includes buttons to play the

movements on Blossom (p), save the modified Blossom movement to a file (B),

and reset the sliders (r).

2.5 Evaluation

We evaluate the performance of the neural network and the modification

method using objective metrics for each of our training objective, as well as

using an online user survey.
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2.5.1 Network Parameters for Evaluation

We empirically derived most of the network parameters. The test set hold-out

rate was set to 20%. The size of the nD latent space was derived empirically.

n = 40 was found to be the maximum possible reduction while still achieving

the training objectives. For the movement reconstruction objective, using simple

mean-squared or mean-absolute error functions resulted in a lack of base mo-

tion (yawing) and side-to-side movement (rolling). This may have been due to

augmenting the data by mirroring the left-right motions, causing the network

to ignore these DoFs and simply default to looking straight ahead. To over-

come this issue, we used a custom loss function that weighs each movement

DoF differently and uses squared error for the front and base motor and abso-

lute error for the left and right motors. The weights for the front, left and right,

and base motors were empirically set to 5, 7, and 20. The KL divergence loss

was implemented according to �-VAE [165], and the classifier used categorical

cross-entropy as its loss function. During network training, we monitored the

following objectives:

• Reconstruction - Monitor loss and plot comparisons of original and recon-

structed movements for visual inspection.

• KL - Not monitored, but �-VAE recommends adjusting the weight accord-

ing to the task [165].

• Classification - Monitor accuracy and plot latent embeddings in Tensor-

Flow Projector to visually inspect emotion class separation in the latent

space [170].

We tuned the loss weights iteratively by increasing weights for underperform-
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Figure 2.5: Filmstrips of a happy movement (top) modified into sad (middle)
and angry (bottom).

ing objectives, e.g. increasing the reconstruction weight if the movement char-

acteristics are not being preserved or increasing the classification weight if the

emotions are being confused. We settled on 5, 0.1, and 7 for the reconstruc-

tion, KL, and classification loss weights, respectively. We empirically tuned the

remaining training parameters: learning rate of 0.1, batch size of 30, Adam op-

timizer [171], and mixup with a factor of 0.2 [172]. 100 epochs was sufficient to

stabilize the losses.
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Figure 2.6: Online survey questions.

2.5.2 Online survey

We evaluated the subjective effectiveness of our method using an online survey,

which presented videos of gestures along with a questionnaire for each gesture.

The movements shown in the online user survey were chosen by randomly se-

lecting five samples within the held-out test sets of the three emotion classes, re-

sulting in a dataset of 15 original movements. We then modify each movement

into the two other emotion classes by using the dropdown interface described
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above, e.g. a happy sample was modified into both sad and angry, as in Fig-

ure 3.7. This provides two modified movements for each original movement,

resulting in a survey dataset of 45 movements, 15 original and 30 reconstructed.

We had two main hypotheses. If the latent representation of a movement is

modified to lie in another target emotion space on the circumplex model, then

the modified movement’s new emotion:

H1) is consistently recognized as the target emotion.

H2) expresses the target emotion as legibly as an original movement with the

same emotion.

For each survey question, a video of a movement was followed by Likert

scales for how well it represented each emotion class and a multiple choice selec-

tion for which emotion it best represented (Figure 2.6). Each survey showed 30

random movements from the original 45. We distributed the survey using Ama-

zon Mechanical Turk offering $2 compensation and received 100 responses.

2.6 Results

The performance of this approach was evaluated using both objective metrics

for the technical implementation and statistical significance tests for the survey

results.
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Figure 2.7: Movement reconstruction loss (top) and emotion classification accu-
racy (bottom) over 100 epochs.

2.6.1 Objective Metrics of Network Performance

We used traditional neural network training metrics to objectively evaluate the

technical implementation. The movement reconstruction loss and emotion clas-

sification accuracy are the primary training objectives. The KL divergence was

weighed lowly as it is comparatively unimportant and primarily provides the

Gaussian structure for the latent space.

Figure 2.7 shows the training curves for the movement reconstruction loss

and emotion classification accuracy. Both curves leveled off by the end of train-

ing. The validation curves, while noisy, are very close in performance to the

training curves, suggesting that the model did not overfit to the training set. We
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Figure 2.8: DoF curves for original (top) and reconstructed (bottom) movements
for each emotion (happy left, sad center, angry right). The blue, yellow, green,
and red lines represent the front, right, left, and base motors, respectively. The
reconstructions have difficulty achieving the same exaggeration as the original
movements, but retain the overall trajectory characteristics.

Figure 2.9: t-SNE representation of all of the movement samples in the latent
space. The latent space is visibly separated by emotions (happy is green, sad is
blue, angry is red).

achieve close to 80% classification accuracy, which is promising considering the

abstract nature of the movement data and simplicity of the network.

The reconstruction objective is further evaluated by comparing the origi-

nal and reconstructed movements. Figure 2.8 contrasts original (top) and re-

constructed (bottom) samples for each emotion class. The reconstructions are

93



less exaggerated, but capture the overall trajectory characteristics of the original

movements.

The classification objective is further evaluated with visualization of the la-

tent space. Figure 2.9 is a dimensionality reduction of all movement samples in

the latent space using t-SNE [173]. The emotion regions are visibly separated in

this space even before applying the transformation into the circumplex space.

Feature Sliders

The performance of the feature sliders can also be objectively measured. A

slider would ideally modify a movement along only its intended feature axis

(e.g. the valence slider moves a movement sample only along the horizontal

valence axis in the interface). However, editing in the latent space may induce

coupling in the features, i.e. modifying valence may indirectly modify arousal,

and vice-versa. This coupling was also present in prior work [72], where adding

mustaches also added masculine features due to these features being highly cor-

related in the input dataset.

The degree of feature coupling is highly dependent upon the emotion class

and specific movement sample. To test this, each slider was maximized indi-

vidually and the unit difference vector bm� from the original ~m0 to modified ~m

movement was calculated.

bm� =
~m � ~m0

|~m � ~m0|

The dot product between bm� and the unit feature vector (¡1,0¿ for valence,
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¡0,1¿ for arousal) denotes the alignment of the modification direction and the

intended axis, with a dot product of 1 denoting perfect alignment. This was cal-

culated for every movement in the held-out test set, and the mean dot products

for all emotion-feature combinations are presented in Table 2.2. All of the results

are almost 1, indicating that both sliders move primarily in their respective axes

and perform as intended.

Table 2.2: Slider evaluation results.
Feature

Valence Arousal

Emotion
Happy 0.999 0.996

Sad 0.995 0.989
Angry 0.995 0.992

Dropdown

The performance of the dropdown menu for modifying a movement towards a

target emotion can also be objectively measured. The dropdown emotion selec-

tor indirectly adjusts the sliders by setting the valence-arousal distance from the

movement to the target emotion’s centroid as the slider values. As visualized

on Figure 2.4, the effectiveness of this method can be calculated by measuring

the distance between the final modified movement ~m and the target emotion

centroid (h in this example), with a distance of 0 denoting ideal performance.

This distance was calculated for every movement in the held-out test set, and

the mean distances for each original-target emotion combination are presented

in Table 2.3.

Modifying a movement towards its original emotion yields the best perfor-

mance. For cross-emotion modification, sad!happy performs the best, fol-

lowed by angry!happy and happy!sad. Interestingly, happy and sad both
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Table 2.3: Dropdown evaluation results. Bolded values indicate best perfor-
mance for each original emotion class. Italicized values indicate second-best
performance.

Target emotion
Happy Sad Angry

Original emotion
Happy 0.126 0.353 0.507

Sad 0.237 0.098 0.328
Angry 0.317 0.405 0.193

have difficulty modifying into angry.

2.6.2 Survey

In addition to the above, we analyzed the subjective metrics collected in the

survey in light of the hypotheses laid out above.

H1

For the first hypothesis, there should be no difference in the recognition accu-

racy for the target emotions between the original and modified movements. For

example, movements modified to be happy should be recognized as happy with

the same accuracy as original happy movements. TOST (two one-sided tests)

equivalence tests were performed between the original and modified move-

ments for each target emotion. Given the range of the accuracies (0 for wrong,

1 for correct), the equivalence test ↵ was set to 0.1. The results (Table 2.4) show

that H1 is supported (p < 0.05) for happy!sad and sad!angry and implied

(p < 0.1) for angry!sad, but is not supported for the other modifications.
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Table 2.4: Mean emotion recognition accuracies and equivalence test p-values
(italicized). Bolded p-values support H1.

Target emotion
Happy Sad Angry

Original emotion
Happy 0.59, –––– 0.63, 0.03 0.18, 0.13

Sad 0.44, 0.91 0.66, –––– 0.21, 0.01

Angry 0.44, 0.91 0.61, 0.08 0.24, ––––

H2

For the second hypothesis, there should be no difference in the legibility scores

for the target emotions between the original and modified movements. For ex-

ample, the legibility scores for movements modified to be happy should not be

significantly different than the scores for original happy movements. The legi-

bility score is the Likert score for the target emotion, e.g. the legibility score for

a sad movement modified to be happy would be the Likert score for the happy

slider in Figure 2.6. Equivalence tests between the original and modified move-

ments for each target emotion were performed. Given the range of the Likert

scores (1-5), the equivalence test ↵ was set to 0.2. The results (Table 2.5) show

that H2 is supported (p < 0.05) for all modifications.

Table 2.5: Mean emotion legibility scores and equivalence test p-values (itali-
cized). Bolded p-values support H2.

Target emotion
Happy Sad Angry

Original emotion
Happy 3.33, –––– 3.42, 0.02 2.07, 0.02

Sad 2.77, 0.02 3.27, –––– 2.27, 0.02

Angry 2.81, 0.02 3.54, 0.02 2.26, ––––
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2.7 Discussion

The objective results show that the network achieves the learning goals well:

the reconstructions look similar to the original movements but with less exag-

geration. This is in line with challenges reported for generative networks in

other domains [174]. It was particularly interesting that the network and re-

gression model were able to map the movements into the circumplex space with

minimal domain knowledge apart from the emotion centroid locations. Quali-

tatively, valence corresponds to looking upwards or downwards while arousal

corresponds to exaggeration.

The subjective results show that H2 is supported for all modifications, but

H1 is only partially supported. Using the dropdown menu for automatic mod-

ification may have been a limiting factor, as evidenced by its mediocre cross-

emotion performance (Table 2.3). Manually moving the sliders while monitor-

ing the output for fine-tuning may have yielded better modified samples.

The subjective results also imply that not all emotions are equally con-

veyable. Anger is consistently recognized below the chance level of 0.33, im-

plying that Blossom may have difficulty conveying anger compared to happy

and sad. When creating the movements, anger was the most ambiguous while

sad movements were usually a slow lowering of the head. This shows the re-

lationship between a robot’s expressive capabilities and its embodiment, which

renders certain emotions harder to convey. Movements modified to be happy

scored considerably lower in terms of both accuracy and legibility than their

original counterparts. This implies that this modification method may not be

able to retain some qualities of hand-crafted movements. These observations
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highlight the difficulty in quantifying emotions, especially with the simple cir-

cumplex model.

Plans for future work include a usability study for the interface and test-

ing with other robots to evaluate generalizability. The study would assess the

ease-of-use of the interface and address the issues with the automated modifica-

tion. We would also test the method using robots with more complex modalities

such as sounds or face gestures. These modalities may better convey emotions

that are difficult to express through movements alone. Additionally, we could

choose to imbue affect into non-emotive or task-oriented gestures such as hes-

itating or signaling. We also want to explore using other starting points in the

latent space, such as neutral movements or random samples, to generate new

gestures.

2.8 Conclusion

We presented a method for modifying affective movements for an expressive

robot using neural networks. Using a dataset of hand-crafted movements, we

trained a classifying VAE to learn a latent space to compactly represent the

movements and classify them by their intended emotions. We then used linear

regression to map the abstract latent space into the comprehensible valence and

arousal dimensions on the circumplex emotion model. Applying simple arith-

metic in the latent space enables us to modify the valence and arousal of the

movements. We evaluated this approach with objective and subjective metrics

which showed that the method performs well along learning objectives and to

some extent supported the hypotheses that the modified movements are com-
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parable to the originals in terms of recognizability and legibility. Compared to

heuristic approaches for creating movements, we used little domain knowledge

of kinematics and robotics. This suggests that using neural networks for gener-

ating robot behaviors is more generalizable and accessible, enabling faster and

easier methods for expanding a robot’s behavior library for prolonged interac-

tion.

100



CHAPTER 3

FACE2GESTURE: TRANSLATING FACIAL EXPRESSIONS INTO ROBOT

MOVEMENTS THROUGH SHARED LATENT SPACE NEURAL

NETWORKS

3.1 Introduction

Robots use movement to convey internal affective states for more compelling

human-robot interactions. However, creating movements often requires work-

ing knowledge of robotics and kinematics. Even accessible methods such as

kinesthetic teaching are constrained by limited access to robots. Relying primar-

ily on retrieving preprogrammed responses from a static database can diminish

users’ interest in the robot as time goes by [175]. Generating new behaviors in

response to different users’ idiosyncratic inputs may mitigate this novelty effect

and suggest that the robot has a deeper capacity for affective understanding.

Machine learning models, particularly deep neural networks, have achieved

state-of-the-art performance in a variety of applications, such as emotion recog-

nition [176]. Neural networks have also shown promise in data generation, such

as generative adversarial networks for photorealistic images and conversational

chatbots [177, 178]. Therefore, we believe that neural networks are well-suited

for affective generation applications.

We propose an approach to generating affective robot movements in re-

sponse to user inputs, specifically emotive human facial expressions. We use

a convolutional variational autoencoder (VAE) to compress robot movements

into a latent embedding space, and a convolutional image encoder to compress

face images into the same latent space. To align the disparate modalities in the
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shared latent space, we implement a triplet loss objective to cluster embeddings

by emotion classes rather than by modality. We evaluated this approach in an

online user survey where participants watched the robot performing the gen-

erated movements and selected the corresponding image from a lineup. We

found that generated happy and sad movements were well-matched, but angry

movements were mostly mismatched to sad images.

Our contribution is an approach for translating facial expression images into

affective robot movements using neural networks. This approach has further

implications for expanding an agent’s behavior library and for other multi-

modal affective applications, e.g. a listening ear responding to text sentiment

and audio inflection, or a video-watching companion reacting to the multi-

modal context of video.

3.2 Related Work

We based our approach upon prior works in robot movement creation and neu-

ral networks.

3.2.1 Robot Movement

Movement enables robots to interact with the world with affordances beyond

screen- and audio-based agents [66]. Apart from goal-oriented actions such as

locomotion or manipulation, movement can also communicate affective states,

either in discrete categories (e.g. happy, sad, angry [149]) or on a continuous

spectrum (e.g. valence, arousal [4]). However, designing emotive movements
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requires depth of knowledge in robotics, movement analysis, and affective ex-

pression. To reduce the need for hand-crafting behaviors, researchers have ex-

plored generating movements using machine learning models [179, 180]. We

are interested in generating affective movements using machine learning tech-

niques, specifically neural networks. We view these generated movements as

not replacing the user-crafted movements, but rather complementing them and

expanding the robot’s available behaviors.

3.2.2 Neural Networks

Robot movement generation

Due to the cost of designing robot movements, which is often time-intensive

and limited by proximity to physical robots, machine learning models can use

existing movements to expand a robot’s available behavior library. Marmpena

et al. generated motion for a humanoid robot by chaining poses together from a

VAE’s learned latent space [181, 182]. Yoon et a. generated gesticulation motions

for a humanoid robot using a multimodal dataset of speech, text, and posture

[183]. The works in this space have largely focused on humanoid embodiments,

perhaps due to the familiarity and availability of humanoid movement data.

Additionally, these approaches rely on datasets that are either expert-crafted or

sourceable in large quantities, e.g. professionally recorded speeches to yield

paired multimodal datasets. We adopt similar neural network methods, but

instead rely on user-crafted movements. We believe that sourcing movements

from users is a more accessible approach and yields samples that better reflect

the potential end-users of such a system.
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Affective applications

The ability for neural networks to learn features is useful for applications that

may otherwise be intractable with heuristics, such as affective recognition and

generation. Many works in this space focus on perceptive tasks, such as su-

pervised sentiment analysis in text and images [184, 185]. Neural networks can

also generate emotive samples of images and audio [186, 187]. Our proposed

application is less technically complex than these examples, particularly in the

relatively low dimensionality of movement compared to high-dimensional im-

ages, text, and audio.

Multimodal machine learning

The ability for neural networks to learn features is also useful for multimodal

applications [188]. Automatic image captioning is a common application that

learns alignments within a paired dataset of images and their corresponding

textual descriptions [75]. Reversing the task to generate images given text de-

scriptions is a more complex task, but recent state-of-the-art techniques are ca-

pable of incredibly realistic generated samples [189]. Nguyen et al. performed

manifold alignment on a paired image and text dataset for robot understanding

[78]. These techniques are well-matched to the inherently multimodal affor-

dances of robots.

We use techniques from these previous works to create an affective response

system that generates robot movements from facial expressions. We perform

intermodal translation by using techniques from multimodal machine learning,

specifically encoder-decoder architectures and class-based triplet loss. The re-
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sulting system encodes both robot movements and human facial expressions

into a shared latent embedding space, and decodes these embeddings to gener-

ate movements from either modality.

3.3 Methods

We used an existing robot platform, datasets of movements and face images,

and encoder-decoder neural networks.

3.3.1 Robot Platform

We used the Blossom robot, as previously described in Section 2.4.1.

3.3.2 Data

Movements

We used robot movement samples that we crowdsourced from lay users. We

asked users to first view video prompts of cartoon characters conveying dif-

ferent emotions (happiness, sadness, anger), then to puppeteer the robot with

their phones as if it were conveying the same emotion. Some movements were

collected locally in-person, though most were collected remotely by users tele-

operating the robot. To account for the subjectivity of the user-crafted samples,

we filtered the dataset by deploying a survey to another set of users. Each ques-

tion contained a video of the robot performing each movement, followed by a
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question asking users to select the conveyed emotion. We deployed the survey

through Amazon Mechanical Turk and received over 250 responses, averaging

25 ratings for each movement. We kept only movements recognized at a thresh-

old of 50%, an arbitrary margin above the chance level of 33%. This filtering

downsized the original dataset from over 200 samples to approximately 140.

We then balanced the emotion classes by oversampling from the smaller class

populations. Because the neural network requires fixed-length inputs, we took

random 4.8-second samples from each movement. Though we can expand the

data through augmentation, we took care to perform only augmentations that

are emotionally neutral, e.g. mirroring a movement from left to right is neutral

and valid, but modulating the pitch of the robot’s head downwards may convey

more sadness and is thus invalid. We designed the following augmentations:

• Shearing the DoFs in time by slightly nudging their trajectories relative to

each other.

• Mirroring horizontally by swapping the left and right tower motors (2 and

3) and reversing the base rotation.

• Decoupling the left and right tower motors. Because these motors are of-

ten synchronized in the user-crafted movements, they have a tendency to

collapse into copies of each other. Desynchronizing these DoFs promotes

rolling motion.

• Shifting the average base rotation slightly. Because the robot faces directly

forward in many user-crafted movements, this augmentation prevents ne-

glecting the base motor and promotes yawing motion.
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Face images

We used the Cohn-Kanade dataset, a collection of facial expression videos from

a diverse range of actors [76]. We used the final frame at the apex of each emo-

tion, resulting in approximately 150 samples. We augmented the data with low-

magnitude rotation, translation, horizontal mirroring, scale, shear, and bright-

ness transformations.

3.3.3 Network
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Figure 3.1: Neural network for translating face images into movements. The
user-crafted movements xm (4.8 seconds at 10 Hz with four DoFs! 48 ⇥ 4) are
encoded into a 36D embedding space zm ⇠ N(µm,�m) (top left), then decoded to
reconstruct the original input ym!m (right). The face images x f are encoded into
the same 36D embedding space z f ⇠ N(µ f ,� f ) (bottom left), then decoded to
generate new movements y f!m (right).

We constructed the end-to-end network using convolutional encoders and

decoders for each data modality.

107



Algorithm 1: Training algorithm
Input : Input movements Xm, input face images Xf

Fm(xm) fdec( fenc(xm)) //movement autoencoder neural

network;

F f (x f ) fembd(ResNet50(x f )) //face image encoder neural

network;

while not converged do
xm, x f //minibatch of movements and faces;

ym!m  Fm(xm) //movement reconstructions;

zm  fenc(xm) //movement embeddings;

z f  F f (x f ) //face embeddings;

Lr  MS E(ym!m, xm) //reconstruction loss with

mean-squared error;

LKL,m  KL(zm) //movement KL divergence;

LKL, f  KL(z f ) //face KL divergence;

Lt  T (zm, z f ) //triplet loss (Equation 3.1);

L wrLr + wKL,mLKL,m + wKL, f LKL, f + wtLt //overall loss,

backpropagate to update networks Fm and F f;

y f!m  fdec(z f ) //pass face embeddings through decoder

to generate movements;

end
F f!m(x f ) fdec(F f (x f )) //face-to-movement translation

network;

Movement VAE

We used a VAE to compress the movement data into embeddings in a lower-

dimension latent space (Figure 4.6, top left to right). The encoder fenc uses

1D convolutions that stride across the time dimension of the movements xm 2

Xm, and outputs the latent space distribution parameters (log-mean and log-

variance of a distribution N(µm,�m)). We empirically set the latent dimension to

36. The decoder fdec uses these parameters to sample embeddings zm ⇠ N(µm,�m)

which pass through deconvolutional layers to reconstruct the original move-

ments ym!m. We used LeakyReLU (↵ = 0.1) and batch normalization after each

convolutional and fully connected layer. We calculated the reconstruction loss
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Lr as the mean-squared error between the raw trajectories of the original and

reconstructed movements. The VAE also uses Kullback-Leibler (KL) divergence

as a loss LKL,m to ensure that the embedding distribution approximates a normal

distribution, i.e. N(µm,�m) ⇡ N(0, 1). Because the embedding space is sampled

from this distribution, the trained network can generate new movements by

sampling embeddings from N(µm,�m) and passing them through fdec.

Face image encoder

We encoded the images of faces x f 2 Xf into the same latent space by first pass-

ing them through a pretrained ResNet50 model [77], then through two fully con-

nected layers (Figure 4.6, bottom left). Similar to the VAE, we used LeakyReLU

and batch normalization after the fully connected layers, and the final encoder

layers yield the embedding distribution z f ⇠ N(µ f ,� f ). We added the KL diver-

gence of the face embeddings LKL, f to the overall loss.

Shared latent space alignment using triplet loss

To align the embeddings Zm and Zf in the shared latent space, we used triplet

loss Lt [78]. The triplet loss minimizes the distance between an anchor em-

bedding za and a positive sample embedding z+, and maximizes the distance

between the anchor and a negative sample embedding z�. For each sample in

a minibatch, we mined positive samples by randomly sampling embeddings

that share the same emotion class, and negative samples from the other classes.

We used an imbalanced mining scheme wherein movement embedding anchors

can sample from either modality, while face embedding anchors only select pos-
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itive samples from the movement embeddings. The intuition is that the image

encoder can easily separate the emotions due to the pretrained ResNet50 model

and should primarily be fine tuned to match the movement embedding space.

For example, given a happy movement as an anchor, positive samples come

from happy movements and images, and negative samples come from the set

of sad and angry movements and images. However, given a happy face image

as an anchor, positive samples come only from happy movements. We used the

Euclidean distance function d(a, b)2 with no margin.

Lt =
X

za2Zm[Z f

max(d(za, z+)2 � d(za, z�)2, 0) (3.1)

The overall loss objective of the network is a weighted combination of the

reconstruction, KL, and triplet losses:

L = wrLr + wKL,mLKL,m + wKL, f LKL, f + wtLt (3.2)

We empirically set the weights as wr = 1 ⇥ 104, wKL,m = 1 ⇥ 10�2, wKL, f = 1 ⇥ 10�1,

and wt = 1 ⇥ 103.

Algorithm 1 describes the training loop. Due to the subjectivity of the out-

puts, we both monitored the loss curves and appraised the quality of the gen-

erated movements during training. After training, we can use the function

F f!m(x f ) = fdec(F f (x f )) to translate face images into movements y f!m (Figure 4.6,

bottom left to right). We trained for 1,500 epochs with a learning rate of 1⇥10�2,

batch size of 32, Adam optimizer, and an 80-20 train-test split.
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3.4 Evaluation

We evaluated the approach through both objective technical metrics and a sub-

jective user survey.

3.4.1 Network Evaluation

We evaluated the technical performance of the method through its performance

in minimizing the loss objectives. We also monitored the outputs: the recon-

structed and image-generated movements, and the separability of the latent

embedding space. As an ablation study, we analyzed the performance of the

network optimizing either only reconstruction loss or only triplet loss.1

3.4.2 User Evaluation

Due to the subjective nature of the proposed method’s outputs, we performed a

user evaluation through an online survey. We constructed a survey where each

question showed a video of a movement and a lineup of three images, consist-

ing of the movement’s actual source image and two random images sampled

from the other emotion classes. We asked users to view the video and select

the image that best corresponds to the movement. We defined a baseline as

using a source image’s known emotion label and randomly selecting a user-

crafted movement sample of the same corresponding emotion class, e.g. pair a

randomly chosen happy face image with a randomly chosen happy movement
1Because KL divergence only helps shape the learned latent space but does not by itself

generate movements or align embeddings, we do not ablate for a KL-only configuration.

111



sample. Rather than claim that our method improves upon the baseline, our

method avoids the repetitiveness of recycling a predefined library of behaviors,

the benefits of which would require a longitudinal evaluation. Our hypothesis

is that the generated movements will be recognized above the 50% level used to

filter the dataset (Section 3.3.2). We deployed the survey on Amazon Mechani-

cal Turk and received responses from 50 participants, each of whom viewed the

complete set of 30 user-crafted and generated movement samples.

3.5 Results

We analyzed the results through objective technical metrics and the subjective

user evaluation.

3.5.1 Network Training

We monitored the reconstruction and triplet losses during training (Figure 3.2).

There is a gap between the triplet training and testing loss, indicating overfit-

ting. As explained later, this gap may be a limitation of the network’s ability

to separate happy and angry movements, particularly those it may not have

trained on.

Reconstruction

We evaluated reconstruction quality by comparing the inputs xm to the outputs

ym!m (Figure 3.3). The outputs capture the overall trajectories of the inputs, but
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Figure 3.2: Network training curves for reconstruction (top) and triplet loss (bot-
tom). Triplet loss shows signs of overfitting, perhaps due to a coupling of per-
ceptually similar happy and angry movements.

have difficulty preserving exaggeration and tend to smooth out low-amplitude

high-frequency “jittering.”

Embedding separation

We evaluated embedding separability by visualizing the latent space Zm[Zf us-

ing t-SNE (Figure 4.13, left) [173]. Happy and sad samples are well-aligned, but

angry movements are barely separated from happy movements. This coupling

may be due to the ambiguity in the data itself (i.e. happy and angry are both

113



Figure 3.3: Examples of original movements xm (top) with their reconstructions
ym!m (bottom) (happy left, sad middle, angry right). Tower 1 controls the pitch
of the front of the head, towers 2 and 3 control the left-right rolling of the head,
and base controls left-right yaw. The reconstructions maintain the overall trajec-
tories but have difficulty preserving the exaggeration and low-frequency high-
amplitude components of the originals.

Figure 3.4: t-SNE plots of the shared latent embedding space for the full multi-
objective network (left) and a network optimizing only triplet loss (right). Col-
ors indicate modality (movements, faces) and emotion (happy, sad, angry).
Stars indicate centroids of each class. Happy and sad movements and faces are
closely aligned, but angry movements are barely separated from happy move-
ments, even when optimizing only for triplet loss (right).

high arousal affective states, and are thus difficult to delineate with a simple

embodiment), and may also explain the overfitting in the triplet loss training

curve (Figure 3.2, bottom).
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Figure 3.5: Reconstructions for a network optimizing only reconstruction loss.
There is only marginal improvement over the standard network (Figure 3.3);
exaggeration is slightly better preserved, but jittering is still smoothed out.

Ablation

Using only reconstruction loss defines an upper bound for generating realis-

tic movements, but does not yield noticeable improvements (Figure 3.5). Ad-

dressing the deficiencies of the reconstructions (oversmoothed, limited exag-

geration) would require alternate techniques such as frequency-domain repre-

sentation [190, 191].

Using only triplet loss defines an upper bound for the latent space sepa-

rability (Figure 4.13, right). Even without other objectives, angry and happy

movements are still close, suggesting that the coupling is not due to the other

losses, but is rather a limitation of the model itself.

Generation

Throughout training, we appraised the subjective quality of image-generated

movements y f!m (Figures 3.6, 3.7). The generated movements retain many of the
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Figure 3.6: Examples of source face images x f paired with their generated move-
ments y f!m (happy left, sad middle, angry right). The generated movements
maintain similar characteristics of the original user-crafted movements xm (Fig-
ure 3.3), e.g. happy movements have high tower 1 position and sinusoidal out-
of-phase rolling motion in tower motors 2 and 3, sad movements have lower
tower 1 position and overall flatter motion.

Figure 3.7: Examples of image-generated happy (top), sad (middle), and angry
(bottom) movements shown in the survey.

characteristics of the user-crafted movements, e.g. happy movements have high

tower 1 position and sinusoidal out-of-phase rolling motion in tower motors 2

and 3, sad movements have lower tower 1 position and overall flatter motion.

As with the reconstructions, the generated movements have less exaggeration
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and jittering than the originals.

Kinematic comparison

Figure 3.8: Comparison of kinematic features between the user-crafted and
image-generated movements. The legend (bottom left) is the emotion (Happy,
Sad, Angry) and source (User-Crafted, Image-Generated). The user-crafted
movements show more between-class variation, but the generated movements
preserve many of the overall features.

We compared the user-crafted and image-generated movements from their
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Table 3.1: Analytical comparison of the kinematic features (Figure 3.8). The
image-generated movements approximate the trends of the means µ of the user-
crafted movements, but often have smaller standard deviations �.

Feature Source Happy Sad Angry
µH �H µS �S µA �A

Tower range User 0.61 0.18 0.99 0.26 0.89 0.30
Gen 0.79 0.18 0.85 0.18 0.78 0.17

Base range User 0.31 0.23 0.26 0.14 0.92 0.65
Gen 0.47 0.23 0.30 0.09 0.35 0.16

Tower speed User 1.60 0.61 0.80 0.25 1.94 1.25
Gen 1.61 0.25 1.42 0.33 1.56 0.27

Base speed User 0.54 0.51 0.32 0.21 1.19 0.40
Gen 0.58 0.13 0.58 0.09 0.62 0.19

Posture User -0.11 0.83 -2.19 0.64 -0.53 1.47
Gen 0.92 1.04 -1.38 0.90 -1.09 0.97

respective test sets by calculating kinematic features (Table 3.1, Figure 3.8). We

calculated range and speed as the peak-to-peak distance and gradient for each

DoF, respectively. We calculated pitch as the difference between the positions

of the front of the head (tower motor 1) and the average of the sides of the

head (tower motors 2 and 3). Positive pitch is looking upwards, and negative

pitch is looking downwards. We averaged speed and pitch across the length

of each movement. The image-generated movements are mostly comparable to

the user-crafted movements, though the user-crafted movements have larger

between-class variation (Table 3.1, µ columns), such as the range and speed

of the tower motors (Figure 3.8, left column). User-crafted angry movements

in particular exhibit noticeably higher base range and speed than their image-

generated counterparts (Figure 3.8, right column).
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3.5.2 User Evaluation

Figure 3.9: Confusion matrices for both the user-crafted (left) and image-
generated movements (right). Participants viewed videos of the movement then
selected the best corresponding face image from a lineup. While the recognition
accuracies for the image-generated movements are lower, happy and sad are
still recognized above the 50% level. However, generated angry movements are
recognized below chance and are most often mismatched to sad images.

The user evaluation serves as a subjective appraisal of the generated move-

ments. For the survey, we used only data from the respective movement and im-

age test sets, i.e. samples that the network did not train on. For the user-crafted

movements, we randomly paired face images only with movements from the

movement test set. For the image-generated movements, we used only move-

ments generated from images from the image test set. We used five movements

for each condition, resulting in a total set of 30 movements (2 sources ⇥ 3 emo-

tions ⇥ 5 samples). Each of the 50 survey respondents watched every video, and

tried to match the movement to its corresponding source image. We analyzed

the user evaluation results with a confusion matrix (Figure 4.16); perfect results

would be an identity matrix. The randomly sampled user-crafted movements
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are overall well-matched (left). The image-generated happy and sad move-

ments are less well-matched (right), but are still above the 50% level we used

for filtering the dataset (Section 3.3.2). However, generated angry movements

are recognized below chance, being confused primarily for sadness, but also for

happiness. To compare the recognition accuracies between the user-crafted and

image-generated movements, we performed equivalence tests (two one-sided t-

tests) with an equivalence bound of ±10%. These tests yielded p-values of 0.39,

0.96, and 0.99 for happy, sad, and angry, respectively, showing that none of the

classes are significantly equivalent.

3.6 Discussion

The network training results show that the network is capable of reconstruct-

ing the original user-crafted movements and generating new movements from

the shared latent space. The difficulty in separating angry movements can be

attributed to the limitations of both the model and the platform. Users who

created movements noted that it was difficult to convey anger in particular due

to the robot’s lack of appendages. This limitation may have resulted in angry

and happy movements being perceptually similar, as they are both classified as

high-arousal emotions on the circumplex model [4]. Additionally, due to the

human uninterpretability of the learned embedding feature space and stochas-

tic nature of t-SNE, the 2D visualization may have found more variance in latent

features related to arousal and not valence, which could have delineated happy

and angry samples.

The confusion of generated angry movements as sad may be attributed to
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the difficulty in maintaining the exaggeration of the user-crafted movements, as

corroborated by the kinematic analysis (Figure 3.8, right column). Though the

generated happy and sad movements were recognized above chance, the accu-

racies were not significantly equivalent to the user-crafted movements. We view

the generated movements as not supplanting, but rather complementing exist-

ing user-crafted behavior libraries. For example, an agent could use the more

legible user-crafted behaviors for “active” scenarios such as call-and-response,

while using the generated behaviors for “passive” scenarios such as greeting.

3.6.1 Limitations and Future Work

We used only a subset of the six canonical emotions [149], which themselves are

a discretization of the broad continuous spectrum of emotions [4]. This simplifi-

cation was done in part to reduce the task to the most legible emotions, but also

due to the limitations of the limbless robot. Additionally, there may be ambigu-

ity within the image dataset itself. Angry and sad images are both low-valence

emotions that may be confounding depending upon the individual performing

the expression. This discrepancy is orthogonal to the confusion between angry

and happy movements, and highlights disparities between movement and im-

ages as affective modalities. Future work could involve using a more expressive

platform with more DoFs, expanding the range of emotions and data modalities

(e.g. text, audio), and deploying the system in a real-time interactive scenario.

While we achieved good survey results using a between-class lineup, i.e.

one image for each of the three emotion classes, the unpaired nature of the dif-

ferent dataset modalities would make it difficult to discern the source image
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from a within-class lineup, e.g. it would be difficult to confidently select the

source happy image from a lineup consisting of only happy images. Although

the usability of this approach on unpaired and separately collected data can be

seen as a feature, future work would benefit from collecting a paired dataset of

prompts and multimodal behavior demonstrations in an attempt to achieve a

deterministic translation function.

3.7 Conclusion

In this work, we demonstrated an approach for generating robot behaviors from

emotive images using neural networks. We used convolutional encoders to

compress affective robot movements and facial expression images into a shared

latent embedding space. We used a triplet loss objective to align the multimodal

embeddings by emotion, e.g. bringing happy movements closer to other happy

movements and faces, and separating them from sad and angry movements

and faces. We then used a convolutional decoder to generate movements from

embeddings from either modality. Through a subjective user evaluation, we

found that happy and sad image-generated movements were recognizable and

well-matched to their source images above a 50% level, but generated angry

movements were mostly mismatched to sad images. Though the recognition

accuracies were not significantly equivalent to the user-crafted movements, the

generated movements are still usable for expanding the agent’s behavior library.

Future behavior systems for affective agents can adopt this approach with dif-

ferent modalities.
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Part IV

Telepresence
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CHAPTER 4

WHAT IS IT LIKE TO BE A BOT? VARIABLE PERSPECTIVE EMBODIED

TELEPRESENCE FOR CROWDSOURCING ROBOT MOVEMENTS

4.1 Introduction

Figure 4.1: In the first-person view (1PV, left) the camera feed is transmitted
from the local robot to the remote phone. In the third-person view (3PV, right)
the local computer camera feed capturing the robot is transmitted to the desk-
top. In both cases, the remote phone’s motion data is transmitted to the local
computer to control the robot’s motors.

Social robots can communicate through their embodiment and movements,

which serve to not only achieve utilitarian functions but also to convey affective

states [66]. Movement is an important nonverbal communication modality that

differentiates robots from graphics- or voice-based agents. However, design-

ing robot movements is often a costly process that requires expertise in robotics

and movement theory. Accessible methods such as learning from demonstra-

tion (LfD) enable lay-users to provide movement samples by either physically

manipulating the robot or controlling its degrees-of-freedom (DoFs) [70, 125]. In

some cases, larger sample libraries can be elicited using crowdsourcing meth-

ods [192, 193, 85]. Movement libraries, whether hand-generated, crowdsourced,

or learned, can be further expanded with generative models that analyze exist-

ing samples and synthesize new realistic movements [145, 151, 152, 153] (Fig-

ure 4.2). For example, deep neural networks can learn important data features
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Figure 4.2: Roboticists can complement their initially small set of hand-crafted
movements by crowdsourcing new samples from users. Machine learning tech-
niques can then further expand the available movements by generating new
samples. This work focuses on the crowdsourcing and generation aspects.

given a sufficient diversity of samples, thus relaxing the need for expert knowl-

edge in movement generation [148]. As a result, human-robot interaction (HRI)

researchers have begun applying neural networks for generating robot move-

ments [182, 194, 183], but these approaches are limited by the availability of

data.

Restrictions on in-person experiments due to the COVID-19 pandemic

forced HRI researchers to shift towards remote technologies, such as simulators

or telepresence robots, and this shift could prove beneficial for robot movement

generation. Researchers have also used these remote technologies to conduct

online evaluations and crowdsource data. Services such as Amazon Mechan-

ical Turk and Prolific have enabled the collection of data from a diverse user

base. Paired with telepresence platforms, crowdsourcing could also enable the
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collection of user-crafted demonstrations for robots. A machine learning model

could then use the collected data to generate new samples and further expand

the robot’s behavior library.

In this work, we present a system for remotely crowdsourcing emotive robot

movements through a telepresence robot. The robot is controlled with a smart-

phone, a widely accessible device that enables a direct mapping from the user’s

body to the robot using the phone’s built-in motion sensors. We compared two

alternate viewpoints for the interface: a through-the-robot first-person view

(1PV) seen on the phone, and a whole-body third-person view (3PV) seen on

an external monitor (Figure 4.1). We performed an evaluation where users con-

trolled the robot and recorded emotive movements to collect a diverse user-

crafted data set. To validate the usability of the collected data set for ML move-

ment generation, we trained a neural network to generate new movements,

and deployed a survey to subjectively compare the user-crafted and generated

movements. Our contributions are:

• An accessible system for remotely motion controlling a robot in either the

first- or third-person, requiring no specialized hardware.

• An evaluation of the system as an embodied telepresence platform. We

conducted a remote study for users to control the robot, create emotive

movements, and rate their experience using the platform comparing the

first- and third-person views.

• An evaluation of the quality of the user-crafted movements as a data set

for ML generation, first by using a generative neural network to synthesize

new movement samples, then by deploying a survey to compare the user-

crafted and generated samples.
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4.2 Related Work

4.2.1 Affective Telepresence

The physicality of objects can promote nonverbal and ludic interactions beyond

the affordances of visual or auditory communication modalities. Strong and

Gaver’s Feather, Scent, and Shaker were minimally expressive home objects for

technologically mediated sociality between remote users [195]. More specifi-

cally within robotics, Goldberg’s early telepresence robots emphasized playful

interactions, such as tending to a garden or uncovering treasures in a sandbox

by remotely controlling a robot through the internet [79]. Sirkin and Ju found

that augmenting a screen-based telepresence robot with motion improved the

sense of presence on both ends [82]. Tanaka et al. compared video, avatar, and

robot communications and found that the presence and movements of a robot

improved the conversation partner’s sense of social presence [196]. The teddy

bear Huggable robot enabled remote users to control its gaze and appendages

through a web interface [197]. Gomez et al. used the Haru robot for transmitting

”robomojis,” emojis that are embodied by the robot’s motion, animations, and

sounds [198]. The MeBot telepresence robot features controllable appendages in

addition to a screen displaying the remote user [199]. Similarly, Tsoi et al. cre-

ated a phone application to turn the Anki Vector robot into a telepresence plat-

form controlled with game-like touchscreen joysticks; this work was a direct

response to the sudden isolation of children due to COVID-19 safety restric-

tions [200]. While these embodied platforms afford an additional dimension of

engagement beyond virtual agents, using button- or joystick-centric controllers

abstract remote users away from their own bodies as a communicative medium.
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Motion Control

Rather than use text inputs or game controllers as proxies for controlling robots,

proprioceptive motion controls afford a more direct translation between the

embodiments of the user and robot, enhancing the sense of self-location and

agency [83]. Ainasoja et al. compared motion- and touch-based smartphone

interfaces for controlling a Beam telepresence robot, and found that users pre-

ferred a hybrid motion-touch interface (motion for left-right steering, touch for

forward-reverse) [81]. Jonggil et al. compared touch and motion controls for a

mobile camera robot, and found that motion controls improved the user’s sense

of presence, synchronicity, and understanding of the remote space [201]. In a

more affective application, Sakashita et al. used a virtual reality system with

head and arm tracking to remotely embody and puppeteer robots [84]. Many of

these robots were utilitarian in design and function, and the user perspectives

were constrained to first-person views.

Viewpoint Control

In traditional video chat applications, the remote user’s view is controllable only

by their interaction partner. Müller et al. created a panoramic stitching applica-

tion to enable remote users to freely adjust their view by panning their phone

around the environment, and found that this significantly improved measures

of spatial and social presence and slightly improved copresence [80]. Tang et

al. extended this work by replacing the panoramic stitching with a 360° cam-

era [202]. They recommended improvement to collocation, such as indicators to

dictate gaze direction or ways to convey remote gestures. Young et al. combined

the panoramic stitching and 360° camera into a single evaluation while also
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adding the user’s hand into the shared view as a gesture indicator, and found

that both implementations increased spatial presence and copresence [203]. Free

choice between first- and third-person is a common interface setting in video

games, and several works have shown that first-person perspectives increase

immersion and the sense of body ownership while third-person offers height-

ened spatial awareness [204, 205, 206, 207].

4.2.2 Crowdsourcing Demonstrations for Robots

Robotic systems can implement LfD systems that enable lay-users to provide

high-fidelity data for machine learning models. However, collecting demon-

strations is still time-consuming and often constrained by physical proximity to

a robot. Mandlekar et al. created a system for remotely crowdsourcing grasp-

ing task demonstrations for simulated and physical robot arms, and found that

more data improves model performance [85]. Among various input devices

ranging from mice to virtual reality controllers, they found smartphones to

be the best compromise of accessibility and functionality. The primary perfor-

mance metric was grasp success, with completion time as a secondary measure.

Timing is an important feature for affective expression, specifically the arousal

dimension on the circumplex model of emotions [4]. Rakita et al. found that

while users could adapt to a teleoperated robot’s physical slowness, latency be-

tween the user’s movement and the robot executing the motion reduced perfor-

mance, further emphasizing the importance of timing [208].

There are several gaps in existing works. Prior works focused primarily on

the usability of different control methods, but were either constrained to first-
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person perspectives or designed for utilitarian, nonaffective functions. Alter-

natively, we are interested in fixing the control input and instead varying the

viewpoints. Although prior works measured subjective experiential responses

from the users as both operators and interactors with the robot, many did not

focus on the affective quality of the robot’s movements. Additionally, there are

few prior works in enabling remote crowdsourcing of robot movement demon-

strations. We address these gaps by designing a robot telepresence system with

accessible motion controls and variable viewpoints. We perform user evalua-

tions to assess the subjective usability of the system for creating emotive robot

movements. We then use the movements to train a neural network to generate

new movement samples, and perform another evaluation to compare the user-

crafted and generated movements. This work probes the following research

questions:

• Would affective telepresence be better achieved with a first- or third-

person perspective?

• Are crowdsourcing movement demonstrations and generative neural net-

works viable methods for expanding a robot’s behavior library?

4.3 Technical Implementation

In this section we detail the technical implementation of the system, including

the robot and user interfaces.
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4.3.1 Robot

We used the Blossom robot, as previously described in Section 2.4.1.

4.3.2 User Interfaces

To bolster the system’s accessibility, we built the application as a mobile browser

experience instead of creating a standalone application. This enabled us to it-

erate quickly and access a rich library of functionality through APIs while ob-

viating the need for external downloads on the user’s device. We created two

interfaces to accommodate the two viewpoints (Figure 4.1, right): a mobile inter-

face showing 1PV from the camera in the robot’s head, and a desktop interface

showing 3PV from the host computer’s webcam. Users access both interfaces

from a public URL.

Mobile interface

The mobile interface consists of a video feed showing 1PV and a simple lay-

out of buttons for controlling the robot (Figure 4.1, center). The layout was

inspired by existing controlling and recording interfaces, such as camera appli-

cations and voice recorders. Control of the robot is toggled with a slider switch.

Users can record and save movements with a large microphone-style recording

button. The robot can be reoriented using a calibration button; this resets the

robot’s yaw orientation relative to the phone’s current compass heading, set-

ting it to face towards the external camera. If the user rotates to the endpoints of

the base RoM, indicator arrows appear on the interface to direct the user back
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towards the center.

Desktop interface

The desktop interface consists of a video screen showing 3PV (Figure 4.1, right).

For the evaluation (described later in Section 4.4.1), the interface also features a

YouTube video player, controls for displaying a video from a given URL, and a

Qualtrics survey at the bottom of the page.

4.3.3 Back End

Communication

The robot is connected to the host computer, which also serves the interfaces.

We use ngrok to enable communication across the internet from the user to

the host computer and robot1. We open two ngrok tunnels: one for accessing

the user interfaces, and another for transmitting the phone orientation data to

motion control the robot.

Motion control

Kinematic models of the phone and robot translate the phone’s orientation into

the angular poses of the robot’s head (Figure 4.3). The mobile interface uses

the DeviceOrientation API to report motion events2. The phone’s inertial
1
https://ngrok.com/

2
https://www.w3.org/TR/orientation-event/

132



Figure 4.3: The alignment of the robot and phone reference frames when con-
trolling in 1PV. In 3PV, the motion is mirrored to accommodate the perspective
of looking straight at the robot (e.g. motion towards the phone’s left moves the
robot to its right).

measurement unit (IMU) records its pose as Tait-Bryan angles about the phone’s

reference frame. In 1PV, the phone and robot axes are aligned as if the phone’s

camera were looking through the robot’s eyes. When switching from 1PV to

3PV, the motion is mirrored horizontally to accommodate the front-facing view

of the robot, as if the user were facing a physical mirror. In 3PV, yawing or

rolling the phone to the left from the user’s perspective moves the robot to its

right, and vice-versa. Assuming a stable connection, motion data is transferred

at a rate of approximately 10 Hz.

Video

For the video streams, we use WebRTC, the standard for online audiovisual

communication3. WebRTC manages the handshaking for broadcasting the lo-

cal video stream to remote viewers.
3
https://www.w3.org/TR/webrtc/
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Figure 4.4: Evaluation setup showing the fields of view of 1PV (yellow) and 3PV
(green). The evaluation proctor (right) acts as a focal point when controlling the
robot in 1PV.

Figure 4.5: Interface evaluation flow. Users first access the interfaces and test
the robot’s motion. In the main movement creation task, users watch videos of
cartoon characters emoting, then create movements for the robot corresponding
to the conveyed emotions (happy, sad, or angry). The evaluation concludes
with a comparative assessment of the perspectives for user experience factors
and overall preferences.

4.4 Experiments

4.4.1 Interface Evaluation

We measured the usability of the system and compared 1PV and 3PV through

an online user evaluation for a movement creation task (Figures 4.4, 4.5). We

recruited participants through the Prolific online survey platform4. We first in-

structed the user to navigate to the interfaces on both their phone and desktop.
4
https://www.prolific.co/
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Table 4.1: Interface evaluation survey questions, displayed after every video
and again at the end of the survey to compare 1PV and 3PV. Note: scales for men-

tal and physical tiredness are reversed from how they were displayed in the evaluation

(1 = not tiring, 7 = tiring) to better match the other factors.

Question 1 (low rating) 7 (high rating)
How synchronized with the robot did
you feel?

Unsynchronized Synchronized

How much did you feel present in the
remote location?

Separate Present

How easy was controlling the robot? Difficult Easy
How enjoyable was controlling the
robot?

Not enjoyable Enjoyable

How engaging was controlling the
robot?

Not engaging Engaging

How mentally tiring was controlling
the robot?

Tiring Not tiring

How physically tiring was controlling
the robot?

Tiring Not tiring

How do you feel about the quality of
the movement you created?

Low quality High quality

The user connected to the robot and tested the controller by looking around the

environment in 1PV, then in 3PV. Only one viewpoint (1PV on the phone, 3PV

on the desktop) is visible at a time. Because of the importance of timing for the

task, we measured the latency between when the orientation data packet is sent

from the user’s phone and when it is received by the robot’s host computer. This

latency is only “one-way” and is exacerbated by the video latency, so the user

will experience a longer delay from their perspective. Latency below 100 ms is

very good and around 1,000 ms (1 second) is serviceable, but exceeding 2,000

ms (2 seconds) noticeably degrades usability. If the user’s latency exceeded the

2 second threshold, we would end the study prematurely and compensate the

user proportionally to their time spent.

For the main movement creation task, we had the users record examples of

emotive gestures. We prompted the users with short videos, between five and
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ten seconds in length, of a cartoon character (SpongeBob, Pikachu, or Homer

Simpson) displaying either happiness, sadness, or anger. We then had the users

control the robot to express the emotion from the video and record the move-

ment. We urged users to not simply mimic the motion of the characters, but

rather to move the robot as if it were conveying the overall emotion from the

scene. Users could rehearse and re-record the movements until they were sat-

isfied, but could not redo the movement once they moved on to the next video.

We introduced two trial videos to acclimate the user to the task, followed by

nine actual videos (three emotions for each of three different characters). To ac-

count for learning effects, we randomized the video orders and perspectives so

that each would be equally represented (e.g. four 1PV and five 3PV, or vice-

versa). We measured the latency during recording for post-analysis of its effect

on the user experience.

We used surveys throughout and after the evaluation to collect user-reported

metrics. After each video, we asked for subjective seven-point Likert scale re-

sponses to measure experiential factors (Table 4.1). After all of the videos, we

again asked for Likert scale responses for each factor, but asked for comparative

responses for both 1PV and 3PV. We also asked for overall preferences between

the perspectives and included a free response field for any additional feedback.

Due to the limited expressiveness of the robot platform, we expected differences

across the different emotion classes (e.g. sadness will be more homogeneous but

easier to convey than anger). We preregistered hypotheses regarding the expe-

riential factors5:

H1.1 1PV will increase the sense of synchronization with the robot due to
5Preregistration link: https://aspredicted.org/pu8p3.pdf
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a heightened sense of embodiment.

H1.2 1PV will increase the sense of presence in the remote location due to

higher immersion.

H1.3 3PV will be easier to use due to heightened spatial awareness.

H1.4 1PV will be more enjoyable due to being a unique experience.

H1.5 1PV will be more engaging due to having to move around in one’s

physical space.

H1.6 1PV will be more mentally tiring due to having to embody a remote

system with latency.

H1.7 1PV will be more physically tiring due to having to move one’s whole

body to maintain a view of the video.

H1.8 3PV will increase the self-reported quality of created movements due

to being able to see the full robot.

We enrolled 30 participants through the Prolific platform and offered $10

USD as compensation. We prescreened by participants with access to both a

mobile device and desktop. In the interest of minimizing latency, we restricted

enrollment to participants living in the United States. We proctored the eval-

uation through an audio-only Zoom call and took approximately 30 minutes

to complete: 10 minutes for the introduction and 20 minutes for creating the

movements. We occasionally encountered incompatibilities with certain An-

droid devices, often stemming from access permissions for the orientation sen-

sor. In cases where we were unable to troubleshoot the problem, we ended

the study prematurely and compensated the participants proportionally to their

time spent; this led us to eventually prescreen to users with Apple devices. We

did not have to reject any participants on the basis of high latency.
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Figure 4.6: Neural network architecture for generating movements. The user-
crafted movements (4.8 seconds at 10 Hz with four DoFs ! 48 ⇥ 4) are used
as inputs and encoded into a 36D embedding space (left). The embeddings are
both decoded to reconstruct the original input (bottom path) and classified into
one of the three emotion classes (happy, sad, or angry) (top path).

4.4.2 Movement Kinematic Evaluation

We calculated kinematic features for each movement: length, speed, and range.

Length is the overall duration of the movement, measured in seconds. Because

there may have been delays between when the user pressed the record button

and actually began or stopped moving, we trimmed the “whitespace” of no mo-

tion at the beginning and end of each movement. Speed is the angular velocity

of the motors, measured in radians per second. Range is the wideness of the

motion in each DoF, measured in radians. We averaged the speed and range

across all DoFs for the entire movement. We preregistered hypotheses for the

movement features:

H2.1 1PV will yield longer movements due to having to move around in

one’s physical space.

H2.2 3PV will yield faster movements due to requiring less full-body mo-

tions.
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H2.3 3PV will yield wider, more exaggerated movements due to requiring

less full-body motions.

4.4.3 Dataset Evaluation

To appraise the validity and usability of the system as a data collection platform,

we used the user-crafted movements to train a neural network to generate new

movements. The network architecture consists of a convolutional variational

autoencoder (VAE) with an additional emotion classifier (Figure 4.6) [71]. The

VAE encodes the movement samples into a compressed lower-dimension latent

embedding space (Figure 4.6, left), then decodes these embeddings back into

a reconstruction of the original samples (Figure 4.6, bottom path). The clas-

sifier operates on the embeddings and separates the latent space by emotions

(happy, sad, or angry) (Figure 4.6, top path). We split the collected dataset by

perspective (1PV and 3PV) and trained the network with identical parameters

on both subsets. The technical results can be objectively evaluated in terms of

the network training metrics, quality of the movement reconstructions, and sep-

arability of the emotion classes in the latent embedding space.

We compared the user-crafted and generated movements in a survey to ap-

praise realism, emotiveness, and emotional legibility. We recorded the robot

performing the movements from an external perspective similar to 3PV in the

first evaluation, and thus used only movements created or generated with the

3PV dataset. We randomly selected subsets of user-crafted movements from a

held-out test set and generated movements from the neural network. To avoid

using several similar or static movements, we further manually curated the
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Table 4.2: Movement comparison survey questions for comparing the user-
crafted and generated movements.

1 (low rating) 7 (high rating)
Fake Natural

Emotionless Emotional
Please select the emotion

Happy, Sad, or Angrythat best describes the
robot’s movement

movements to four diverse and representative examples for each condition, re-

sulting in a set of 24 movements (3 emotions ⇥ [User, Generated] ⇥ 4 examples).

Users watched the movements and gave ratings for realism, emotiveness, and

which emotion was conveyed (Table 4.2). We preregistered hypotheses for the

movement comparison:

H3.1 The generated movements will be as realistic as the user-crafted

movements.

H3.2 The generated movements will be as emotive as the user-crafted

movements.

H3.3 The generated movements will be recognized with the same accuracy

as the user-crafted movements.

4.5 Results

4.5.1 Interface Evaluation Results

We used two-sided t-tests to test H1 from the end-survey Likert scale responses,

and found that many results were significant in the opposite direction of our
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Figure 4.7: Likert scale responses from the interface evaluation end-survey
questions. Color indicates level: blue = 1 (low), gray = 4 (neutral), red = 7
(high). Width indicates proportion of responses for a given level. Black bars
indicate means and standard deviations. p-values of H1 tested with two-sided
t-tests are displayed on the right, and the means indicate preferences for 3PV in
all factors except presence and tiredness. Note: as in Table 4.1, the scales for mental

and physical tiredness are reversed from what was displayed in the survey.
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Table 4.3: p-values of H1 tested with two-sided t-tests within each emotion,
calculated from the average of the scores after each video. Slight support is
suggested only for sadness being more physically tiring in 1PV.

Factor Happy Sad Anger
Sync (1PV>3PV) 0.706 0.995 0.681

Presence (1PV>3PV) 0.365 0.667 0.911
Ease (3PV>1PV) 0.428 0.665 0.430

Enjoyment (1PV>3PV) 0.750 0.637 0.558
Engagement (1PV>3PV) 0.881 0.382 0.630
Mental tired (3PV>1PV) 0.567 0.960 0.619

Physical tired (3PV>1PV) 0.938 0.088 0.718
Quality (3PV>1PV) 0.908 0.744 0.609

Figure 4.8: Overall preferences reported at the end of the evaluation, showing
strong preferences for 3PV.

hypotheses favoring 1PV (Figure 4.7). We found overwhelming preference for

3PV, with significant results in synchronization, ease, enjoyment, engagement,

and quality. Even increased presence, which we assumed would be decisively

in favor of 1PV, is not supported. We also tested the hypotheses within each

emotion class using the responses after every video, and only found slight sup-

port for sadness being more physically tiring in 1PV (Table 4.3). Interestingly,

the within-emotion scores do not correlate with the comparative end-survey

scores. The overall preferences are also favorable toward 3PV (Figure 4.8).

We compared the end-survey scores against the average latencies for each

user and for each perspective to analyze latency’s effect on the experience (Fig-
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Figure 4.9: Interface evaluation scores versus latency for each user for each per-
spective. The horizontal axes are truncated to 300 ms (maximum 900 ms) and
vertical jitter is applied for legibility. The low r2 values suggest no correlation
between latency and any of the experiential factors.
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ure 4.9). As suggested by the low r2 values, we found no correlation between

latency and any factors, suggesting that latency did not noticeably affect the

user experience.

4.5.2 Movement Kinematic Evaluation Results

Figure 4.10: Comparison of kinematic features between 1PV and 3PV, testing
H2 with two-sided t-tests. Movement length did not significantly vary between
perspectives, but 3PV yielded faster and wider movements compared to 1PV.

We computed the average kinematic features for each user and for each per-

spective, and used two-sided t-tests to test H2 (Figure 4.10). We found support

for 3PV yielding faster and wider movements, but no support for 1PV yielding

longer movements.

4.5.3 Dataset Evaluation Results

The interface evaluation yielded approximately 135 movement samples from

each perspective. We prepared the data by chunking the 4-DoF 10 Hz move-

ments into samples of 4.8 seconds with a sliding window of 0.3 seconds, result-

ing in 48 ⇥ 4 data samples. We then performed an 80-20 train-test split and aug-
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Figure 4.11: Network training results on the test sets. Color indicates perspec-
tive, line style indicates data size. Using more data generally lowers the overall
loss (top), but only slightly improves classification accuracy (bottom). The small
improvement indicates that the network “overfits” to the smaller test set when
using less data.

mented the training data by mirroring (flipping left-right), shearing (nudging

the timing of DoFs relative to each other), shifting the center (adding small vari-

ation to the left-right direction that the robot is looking), and decoupling the left
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Figure 4.12: Movement reconstructions with varying 3PV dataset sizes. Recon-
struction fidelity is proportional to dataset size.

Figure 4.13: Embedding space visualization using t-SNE for 1PV (left) and 3PV
(right), color-coded by emotion (happy = green, sad = blue, angry = red). 3PV
is more separable, suggesting more diversity and legibility.

and right tower motors (preventing these DoFs from copying each other), yield-

ing over 150, 000 training samples for each perspective. We tuned the neural

network architecture and parameters until satisfactory results could be achieved

on the datasets from both perspectives.
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Figure 4.14: Sample trajectories of user-crafted (top) and network-generated
(bottom) movements from the 3PV dataset. The generated movements retain
the characteristics of the original user-crafted movements.

Figure 4.15: Likert scale responses from the movement comparison survey. As
in Figure 4.7, color indicates level, width indicates proportion of responses for
a given level, and black bars indicate means and standard deviations. For each
user, the scores for each emotion (happy, sad, or angry) and source (user-crafted
or generated) are calculated and rounded to the nearest integer (e.g. a given
user’s responses for realism for all happy user-crafted videos they saw are av-
eraged and rounded into a single Likert score, which represents one data point
used in the top left bar). p-values of H3 tested with equivalence tests (two one-
sided t-tests, equivalence bound of 0.6) are displayed on the right sides. The
two sources are largely comparable, except for user-crafted happy movements
being more emotive and angry movements being more realistic.

We empirically found that an embedding size of 36 was the lowest before no-

ticeably degrading reconstruction performance. The encoder convolutions have

a stride of 2 to progressively increase the effective receptive field. We trained the

network for 10 epochs with a learning rate of 2 ⇥ 10�3 and a batch size of 32. We

used Leaky ReLU activations (↵ = 0.01), batch normalization [209], and 10%

dropout after the convolutional and dense layers, as well as a mixup parameter

of 0.2 [172]. For the reconstruction loss, we used mean absolute error for the
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front (tower 1) and base DoFs, mean squared error for the side (towers 2 and 3)

DoFs, and weighed the errors as 5, 7, and 10 for the front, side, and base DoFs,

respectively. For the classification loss, we used categorical cross entropy on the

softmax output of the classifier. For the overall loss, we applied weights of 5 and

7 for the reconstruction and classification losses, respectively, and implemented

a � = 0.1 weight for the VAE’s Kullback-Leibler divergence [165].

Network training results

We trained the networks on both datasets with varying dataset sizes as an ab-

lation study (Figure 4.11). We found that the 3PV dataset required less tuning

to achieve better results. There is a noticeable improvement for the overall loss

compared to using only 10% of the dataset, but only marginal improvement

compared to using 50%. While it appears that smaller training datasets do not

dramatically impact classification accuracy, the testing dataset sizes were also

decreased; the high classification accuracies with smaller datasets are actually

“overfit” and thus less generalizable to unseen samples.

Movement reconstruction results

We compared movement reconstruction accuracy with varying dataset sizes

(Figure 4.12). Reconstruction fidelity increases with more data, most notice-

ably in the base motion. The network captures the overall trajectories but has

difficulty achieving the same level of exaggeration and reconstructing granular

motions, such as low-amplitude high-frequency jitter.
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Embedding separability results

We used t-SNE to further compress the 36D embeddings into visualizable 2D

representations (Figure 4.13). As corroborated by the classification accuracies,

the emotion clusters are more separable in the 3PV dataset than the 1PV dataset.

This suggests that the 3PV movements are more diverse and will yield more

emotionally legible generated movements.

Movement generation results

To generate new movements, we first randomly sampled about the embedding

distributions of each emotion (e.g. for a new happy movement, we sampled a

36D embedding about the mean and standard deviation of the happy embed-

dings), then passed these embeddings through the VAE decoder to generate full

48⇥4 movements. Upon inspection, the generated movements look comparable

to the user-crafted movements (Figure 4.14).

Movement comparison survey results

We deployed the movement comparison survey on Prolific, offered $2 in com-

pensation for approximately 10 minutes of work, and received 100 responses.

Each user watched and rated 15 random movements out of the total set of 24

movements. We averaged each user’s responses for each emotion, source, and

measure, then rounded to the nearest integer on the Likert scale (e.g. a given

user’s responses for realism for all happy user-crafted videos they saw are av-

eraged and rounded into a single Likert score, which represents one data point

used in the top left bar of Figure 4.15). On the unrounded per-user averages,
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Figure 4.16: Confusion matrices for user-crafted (left) and generated move-
ments (right) using 3PV. Overall and within-emotion accuracies accompany the
vertical labels. Happiness and sadness are largely correctly matched in both
sources, but anger is rarely chosen.

we used equivalence tests (two one-sided t-tests) with an equivalence bound of

0.6 (1/10th of the seven-point Likert scale) to test H3. The results show that the

generated movements are comparable to the user-crafted movements in many

measures, except for user-crafted happy movements being more emotive and

angry movements being more realistic.

We compared the recognition rates between the actual and interpreted emo-

tions (Figure 4.16). The recognition accuracies are well above chance (33%) for

both the user-crafted and generated movements. Looking at the row-wise re-

sults, happiness and sadness are recognized with high accuracies, though gen-

erated happy movements are more ambiguous. Anger has low recognition rates

in both sources, and the column-wise responses indicate that users selected

anger much less frequently than the other emotions.
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4.6 Discussion

The interface evaluation revealed strong preferences for 3PV, suggesting that

an external perspective may be more useful for conveying affect remotely. The

dataset evaluations showed that the user-crafted movements are usable as in-

puts to the neural network for generating new movements. The movement

comparison survey supported movement generation as a valid approach for

expanding a robot’s behavior library.

Feedback to the interface evaluation was largely positive, with many partic-

ipants commenting on the uniqueness and enjoyability of the experience. Sev-

eral participants also commented on the robot’s design, remarking on its cute-

ness and the fun factor in controlling the robot remotely. The robot’s aesthetics

may explain the strong preferences for being able to watch it move in 3PV.

Latency can explain the lower than expected synchronization and presence

measures in 1PV. Compared to viewing the external robot in 3PV, 1PV may

heighten the expectation of synchrony between motion and the video updat-

ing. Latency lands 1PV in a temporal uncanny valley, exacerbating the delay

and negatively affecting the experience.

Latency can also explain the slower, smaller movements in 1PV. Although

we did not view the users during the evaluation, it is reasonable to posit that

1PV employs more of the user’s body as they must turn their their head to main-

tain a view of the video. In contrast, control in 3PV requires only hand and arm

movements, which enables users to create faster and wider movements.

The neural network training results support performance increasing with
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more data, though our dataset is still magnitudes smaller than publicly avail-

able datasets for common modalities such as images or text. There are relatively

few works in generative affective robot movements that generalize across dif-

ferent robot platforms and machine learning methods. Establishing standard-

ized comparisons for generative movement algorithms is important for future

research to build upon prior works; the GENEA Project is a recent development

that aims to address this issue by providing common datasets for benchmark-

ing [193].

The subjective comparisons of the user-crafted and generated movements

show that they are largely comparable, but also indicate limitations of the

robot’s embodiment, particularly when emoting anger. The low survey re-

sponses for anger and user feedback regarding the robot’s limitations, specifi-

cally its lack of appendages and difficulty in tracking finer motions, indicate that

more DoFs are necessary for delineating subtleties in affect. Interestingly, the

network classifier can outperform the human classifications (¿70% compared

to ¡60%), suggesting that the network learns latent features that are not legible

from the movement videos.

4.6.1 Limitations and Future Work

Latency

Latency is the largest bottleneck in the system, but is the hardest to mitigate.

Although the latency measurements for the trip from the user’s phone to the

robot’s host computer could reach as low as 10 ms, we cannot accurately mea-

sure the return latency between when the robot moves and when the video up-
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dates on the user’s device. WebRTC benchmarks measured round-trip times

from 400 ms on a cellular network down to below 100 ms on a dedicated uni-

versity connection [210]. By contrast, virtual reality systems are expected to

perform with latency below 50 ms, and ideally below 20 ms [211]. Future tech-

nical work could involve optimizing the underlying technologies to minimize

the latency, and perhaps even freely adjust latency as a controlled variable to

investigate its effects on the user experience.

Embodiment

While the simplicity of the robot’s design enabled novice users to quickly learn

the control scheme, it also limited its expressive capabilities to three DoFs. Sev-

eral users noted feeling that many of their movements were very similar and

expressed wanting arms to convey strong emotions, particularly anger. The

robot’s vertical translation and ear DoFs were removed to simplify the interface,

but these motions may be significantly important for affording more expressive-

ness.

Remote evaluation paradigm

Due to the social distancing restrictions that were in place at the time of this

work, we designed the interface evaluation to focus solely on the experience of

the remote participant. This neglects studying the experience of a local partic-

ipant interacting with the robot, and how a remote participant would use the

system accordingly. A two-sided scenario may reveal favorable situations for

1PV, such as tasks requiring joint attention or communication in a real-time en-
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vironment.

4.6.2 Design Implications

Research

Through this work, we gathered a dataset of affective movements from novice

users, who provided usable samples after a short trial to acclimate to the sys-

tem. The results of the interface evaluation suggest that 3PV is more enjoyable

and useful for the movement generation task; future affective telepresence sys-

tems may benefit from this external perspective. The comparison survey re-

sults showed that these movements are still legible to other users, and support

crowdsourcing and generation as viable methods for expanding a robot’s given

behavior library. Other researchers can adopt this accessible crowdsourcing ap-

proach for their own systems. For example, video-based pose trackers (e.g.

OpenPose, VideoPose3D [212, 213]) can translate human motions into move-

ments for humanoid robots [183], emancipating these systems from specialized

motion capture environments. In the vein of RoboTurk [85], the remote control

scheme could be adapted to source demonstrations for other LfD tasks such as

locomotion or manipulation. Such open-access systems will require enforceable

review policies to ensure the quality and usability of the samples, such as the

two-survey approach with independent populations that we undertook in this

work.
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Figure 4.17: Scenario depicting remote communication through pairs of robots
in separate locations. Each user remotely controls their conversation partner’s
robot and can record behaviors, which are stored in a personal repository on
each robot and in a collective database. Coupled with behavior generation al-
gorithms, these behaviors imbue the robot with personalities that either reflect
a specific user or represent the robot as a unique individual character.

Fictional scenario

We imagine robots as a communicative medium that affords a transmission

of one’s physicality, adding an extra dimension beyond voice- or video-based

mediums. In one example scenario6, two family members in separate locations

communicate through their conversation partner’s respective robot, transmit-

ting their voice, movement, and, optionally, their face through screens imple-

mented on the robots. The remote users can record their movements and save

them to their personal repository on their communication partner’s robot. These

movements are tied to a unique individual user, but are also added to a collec-

tive database of all user-crafted movements. The backend movement genera-
6This assumes that such social robotic systems are adopted on a similar scale as modern

computing devices, either through commercial viability or open-sourcing.

155



tion algorithm trains on both the individual and collective samples. With the

individual samples, the robot learns to act as a proxy of a specific user by gener-

ating movements in their personal idiosyncratic style. With the collective sam-

ples, the robot learns to act as a unique individual character. While movement

is seemingly more innocuous than incendiary imagery or text, future work may

involve safeguarding against such adversarial content.

4.7 Conclusion

We presented a variable perspective telepresence system for motion controlling

a social robot and crowdsourcing affective movement samples. The system uses

a smartphone as an accessible motion-based input device. Users controlled the

robot from one of two perspectives: either embodying the robot from a first-

person perspective through a camera in the robot’s head, or a third-person per-

spective with an external camera looking at the whole body of the robot. To

crowdsource robot movements and assess the experiential quality of the system,

we performed an evaluation where lay-users created emotive movement sam-

ples for the robot. The subjective responses showed strong preferences for the

third-person perspective in self-reported measures of synchronization, ease, en-

joyment, engagement, and quality of the created movements. The third-person

perspective also yielded movements that were faster and wider than those cre-

ated in the first-person. To evaluate the usefulness of the collected dataset, we

used the user-crafted movements as inputs to a neural network to generate new

movements. Through a second user survey, we found that the user-crafted and

generated movements were largely comparable. This work supports the use

of affective telepresence systems as crowdsourcing platforms for robot demon-
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strations, and hopefully inspires creative approaches for conducting remote

human-robot interaction research.
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Part V

Conclusion
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4.8 Discussion

In this section I review the work’s outcomes and contributions, as well as limi-

tations and suggestions for future work.

4.8.1 Blossom Platform

The Blossom platform is this work’s primary contribution to the research com-

munity. We sought to question the conformity of social robot design (e.g. rigid,

bright-colored, illuminated accents), arriving at a zoomorphic open-source de-

sign. The resulting Blossom platform features a snap-fit interior tensile actu-

ation mechanism and soft fabric covers that are customizable by end users,

even those without prior robotics experience. The movement authoring sys-

tem is based on a motion-controlled smartphone application, enabling lay users

to program the robot’s behaviors. The artifact itself, comprising of accessible

hardware and software, has been reproduced by others for their own research

agendas. In the vein of research through design and knowledge embodied in the

artifact, Blossom embodies several aesthetic traits – post-digital, critical design,

user customization of robots – that may be useful for future HRI researchers

developing their own robot platforms. In evaluating Blossom as an accessible

platform, we deployed Blossoms in various contexts with lay users from diverse

backgrounds, including workshops for students to create their own versions of

the robot. The feedback to Blossom’s design was largely positive, with many

remarking that it challenged conventional notions of robot designs.

As a research platform, Blossom has several limitations and points for poten-
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tial for improvement. Blossom’s embodiment, though able to achieve smooth

lifelike movements, is limited in its expressive range. Blossom could convinc-

ingly express happiness and sadness, but users had a particularly difficult time

both creating and recognizing anger. Movement authors often expressed want-

ing more appendages, such as arms or a tail, to both express anger and enable

more variation in the movements. Keeping Blossom’s embodiment simple was

a compromise in accessibility, as a more complicated embodiment would have

been more difficult for lay users to control; future work would involve design-

ing various appendage configurations. Apart from the camera used for telep-

resence, Blossom currently has no other sensing functionality; future configura-

tions could explore additional sensors and output devices, such as microphones,

speakers, or screen displays.

As Vandevelde noted in his thesis on the OPSORO project, developing an

open-source project requires more than simply uploading the source code and

design files [60]. Maintenance, documentation, and community building are

key activities for open-source ecosystems. However, these activities are often

dismissed as technical “plumbing” that is orthogonal to research. This misalign-

ment deincentivizes researchers from pursuing work that does not immediately

yield publishable results. Recommendations for promoting more exploratory

open-source design projects include:

• Hiring technical staff specifically for supporting these projects.

• Calling on venues to reevaluate the merit of design work and technical

contributions (e.g. through workshops, demonstrations, and competi-

tions).

• Developing field-wide best-practice guides for future researchers and

160



roboticists, such as the Soft Robotics Toolkit [214].

4.8.2 Behavior Generation

The secondary contribution of this work is the approach for data-driven robot

behavior generation. Rather than relying chiefly on expert-crafted movements

programmed by roboticists, designing the movement authoring system to be ac-

cessible enabled crowdsourcing movement samples from a diverse population.

We crowdsourced movement samples conveying different emotions (happiness,

sadness, anger) from several volunteers. The initial dataset acts as an input for

generative neural network models to create new emotive movements. The mod-

els adapted techniques from other data domains (e.g. images, text) to the new

application of generative robot movement. I demonstrated two applications of

this approach – movement modification and face→movement translation – and

the user evaluations performed. The models produced convincing movements

that could expand the robot’s behavior library beyond the initial user-crafted

data set.

Given the unique application of this work, there were several limitations

with the approach. Though the accessibility of the system enabled crowdsourc-

ing, the resulting dataset was magnitudes smaller than typical machine learning

applications. With regards to the network architecture itself, the small dataset

and uniqueness of the application constrained the network in terms of size and

application. We have experimented with further applications for the network,

such as implementing an embedding-based unit selection method to concate-

nate movements into longer sequences, inspired by prior applications in music
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[215]. Another limitation, coupled to Blossom’s physical design, is the limited

expressive range of the network’s outputs. Future work would involve scaling

this approach to more complex embodiments, such as humanoid robots or vir-

tual characters. Alternative movement authoring methods, such as pose track-

ing and manual mapping from humanoid to robot embodiments, could be a

useful compromise between accessibility and increased expressiveness.

4.8.3 Telepresence Evaluations

The final contribution of this work is the application of Blossom as a telepres-

ence robot for remote communication. Compared to traditional telepresence

platforms which emphasize screen-based representations of the remote user,

Blossom transmits physicality by employing the user’s own movement in the

interaction. The system could be operated in either a first-person perspective

looking through the robot, or a third-person perspective looking at the robot.

The user evaluations showed that the third-person perspective was preferred

by users and yielded more useful movement samples for the behavior genera-

tion models.

Given the social distancing measures that were in place during the develop-

ment of the telepresence work (early 2021), I was unable to perform in-person

evaluations with local users interacting with the remotely controlled robot. Ad-

ditionally, the overwhelming preference for the third-person perspective sug-

gests that viewpoint affects user experience; looking through the robot may

heighten expectations for low latency, perceptually exacerbating the network

delay. A human-human interaction scenario may have elicited preferences for
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the first-person perspective. Other researchers are continuing to use their own

Blossoms to explore other contexts, such as remote collaboration and compan-

ionship.
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4.9 Conclusion

I presented an argument for using accessibility as a way to humanize the robot

as a medium for communication, using the Blossom robot as an extended case

study. Literal humanization of robots through humanoid appearances and

human-like behaviors presents large technological challenges. However, social

companion robots also pose the risk of amputating our capacity for human-

human interaction. I proposed to avoid these challenges by humanizing robots

through alternative designs and accessibility. Zoomorphic designs can reduce

the expectations for human-like interaction, while accessibility makes their in-

ner workings familiar to human users and frames robot development processes

as opportunities for human-human interaction. I detailed three phases of Blos-

som’s development – design, movement, and telepresence – and the efforts to

make each phase accessible to non-expert users, enabling users to communi-

cate through the medium of the robot. Novice users were able to contribute

to each subsystem, including Blossom’s physical design, behavior authoring,

and application as a remote telecommunication device. Future work could ad-

dress enhancing the platform’s expressiveness by adding more appendages and

applying the behavior generation algorithms to more complex embodiments

and interaction scenarios. Given the pandemic-imposed research constraints at

the time of the telepresence evaluation, studying in-person interaction through

Blossom as a telepresence robot is left for future work. I hope that this project

inspires a new paradigm of accessible social robot design that promotes robot-

mediated communication for human-human interaction.
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